IntroductionSubjects with type 2 diabetes have an excess risk of cancer. The potential role of advanced glycation end products (AGEs) accumulated during long-term hyperglycemia in cancer development has been suggested by biological studies but clinical data are missing. AGEs can be estimated by measuring the skin autofluorescence. We searched whether the skin autofluorescence could predict new cancers in persons with type 2 diabetes.Research design and methodsFrom 2009 to 2015, we measured the skin autofluorescence of 413 subjects hospitalized for uncontrolled or complicated type 2 diabetes, without any history of cancer. The participants were followed for at least 1 year and the occurrences of new cancers were compared according to their initial skin autofluorescences.ResultsThe participants were mainly men (57.9%), with poorly controlled (HbA1c 72±14 mmol/mol or 8.7%±1.8%) and/or complicated type 2 diabetes. Their median skin autofluorescence was 2.6 (2.2–3.0) arbitrary units. Forty-five new cancer cases (10.9%) were registered during 4.8±2.3 years of follow-up: 75.6% of these subjects had skin autofluorescence higher than the median (χ2: p=0.001). By Cox regression analysis adjusted for age, gender, body mass index, history of smoking and renal parameters, skin autofluorescence >2.6 predicted a 2.57-fold higher risk of cancer (95% CI 1.28 to 5.19, p=0.008). This association remained significant after excluding the eight cancers that occurred in the 4 years after inclusion (OR 2.95, 95% CI 1.36 to 6.38, p=0.006). As a continuous variable, skin autofluorescence was also related to new cancers (OR 1.05, 95% CI 1.01 to 1.10, p=0.045).ConclusionsSkin autofluorescence, a potential marker of glycemic memory, predicts the occurrence of cancer in subjects with type 2 diabetes. This relation provides a new clinical argument for the role of AGEs in cancer. Their estimation by measuring the skin autofluorescence may help select subjects with diabetes in cancer screening programs.
BACKGROUND SARS-Cov-2 (COVID-19) has become a major worldwide health concern since its appearance in China at the end of 2019.OBJECTIVE To evaluate the intrinsic mortality and burden of COVID-19 and seasonal influenza pneumonia in ICUs in the city of Lyon, France.DESIGN A retrospective study.SETTING Six ICUs in a single institution in Lyon, France.PATIENTS Consecutive patients admitted to an ICU with SARS-CoV-2 pneumonia from 27 February to 4 April 2020 (COVID-19 group) and seasonal influenza pneumonia from 1 November 2015 to 30 April 2019 (influenza group). A total of 350 patients were included in the COVID-19 group (18 refused to consent) and 325 in the influenza group (one refused to consent). Diagnosis was confirmed by RT-PCR. Follow-up was completed on 1 April 2021. MAIN OUTCOME(S) AND MEASURE(S)Differences in 90day adjusted-mortality between the COVID-19 and influenza groups were evaluated using a multivariable Cox proportional hazards model.RESULTS COVID-19 patients were younger, mostly men and had a higher median BMI, and comorbidities, including immunosuppressive condition or respiratory history were less frequent. In univariate analysis, no significant differences were observed between the two groups regarding in-ICU mortality, 30, 60 and 90-day mortality. After Cox modelling adjusted on age, sex, BMI, cancer, sepsis-related organ failure assessment (SOFA) score, simplified acute physiology score SAPS II score, chronic obstructive pulmonary disease and myocardial infarction, the probability of death associated with COVID-19 was significantly higher in comparison to seasonal influenza [hazard ratio 1.57, 95% CI (1.14 to 2.17); P ¼ 0.006]. The clinical course and morbidity profile of both groups was markedly different; COVID-19 patients had less severe illness at admission (SAPS II score, 37 [28 to 48] vs. 48 [39 to 61], P < 0.001 and SOFA score, 4 [2 to 8] vs. 8 [5 to 11], P < 0.001), but the disease was more severe considering ICU length of stay, duration of mechanical ventilation, PEEP level and prone positioning requirement.CONCLUSION After ICU admission, COVID-19 was associated with an increased risk of death compared with seasonal influenza. Patient characteristics, clinical course and morbidity profile of these diseases is markedly different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.