is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. A scanning electron microscope (SEM) and a numerical microscope, provided with a scanning device, were periodically used to analyse tool wear mechanisms and to measure wear progression of the tool cutting edges. For both coated and uncoated drills, abrasion was the dominant tool wear mechanism, affecting the entire cutting edges. Higher wear was observed on uncoated tools which caused a significant increase in thrust force during drilling both Al and CFRP materials. The influence of these phenomena on the quality of the holes and on the generated roughness was also discussed.
Machining is a process implying extremely high coupled thermo-mechanical stresses. The workpiece mechanical properties decrease with the temperature generated during the process and that temperature has a direct influence on wear intensity undergone by the tool. In the case of a drilling operation, the temperature generated by the cutting process can lead to metal burr formation and/or composite matrix degradation by burning. When these two materials are used in the form of a sandwich-type stacking, the temperature attained in the metallic part can cause new defects such as: i) a difference between the diameters measured in each material and ii) organic matrix damages due to heat diffusion from the metal towards the CFRP layer. Temperature reached at the tool/workpiece interface is difficult to measure during drilling operation, due to its enclosed configuration; numerical simulation is therefore a good alternative to access to this information. The purpose of this study is to develop and carry out numerical simulations in order to estimate the workpiece thermal field generated during drilling. The simulations are validated by comparing simulated and measured temperatures at 4 mm from the holes wall. This method is applied to evaluate thermal field generated during drilling (with chip removing cycles) of CFRP/Aluminum alloy stacks. The influence of the drilling kinematics on the workpiece thermal field is also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.