We report for the first time a study on non-contact thermal poling of soda lime silicate glasses using DC gas discharge. In this work, the formation of a glow discharge is evidenced during the thermal poling treatment (longer than 30 minutes). The hardness and the chemical durability of glasses poled under different conditions (contact or non-contact) and atmospheres (nitrogen or air) are measured and compared to that of un-poled reference glass. The results reveal enhanced mechanical and chemical properties for samples poled under nitrogen as compare to air poled or soda lime silicate glass samples. A structural and chemical analysis of surface of the glass using IR-reflectance measurement and ToF-SIMS is also presented. The formation of a "silica-like" layer on the surface of nitrogen poled glasses is observed, which is likely associated with the enhancement of surface properties. On the other hand, the introduction of protons beneath the surface of glasses poled under air leads to the formation of a hydrated alkaline earth silica layer. Based on the observations a mechanism behind the sustainability of the plasma under DC conditions is proposed. How to cite this article: Chazot M, Paraillous M, Jouannigot S, et al. Enhancement of mechanical properties and chemical durability of Soda-lime silicate glasses treated by DC gas discharges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.