Metallic materials can be used as Phase Change Materials for thermal storage, since they absorb/release relatively high latent heat for solid/liquid transformation during the heating/cooling parts of thermal cycles including their melting/solidifying range. The active PCM phase can also be mixed to another phase, melting at higher temperature, forming metallic composites, also referred in literature as Phase Change Alloys. To be considered as ‘form stable’ material, leakage of the molten active phase must be prevented. The present contribution focuses on the processing/microstructure/ properties correlations of PCAs based on the simple Al-Sn system, with activation temperature of about 230°C. They were produced by mixing Al powders to two different Sn powders adopting different compaction techniques and heat treatments, and cycled to simulate service. Their microstructure, thermal and mechanical response in as-manufactured and after service revealed that, amongst those experimentally available, PCA produced by compaction at room temperature inhomogeneous a blend of the powders is the optimal procedure, with good absorbed/released enthalpy and thermal stability after service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.