We give a new proof of the Caffarelli contraction theorem, which states that the Brenier optimal transport map sending the standard Gaussian measure onto a uniformly log-concave probability measure is Lipschitz. The proof combines a recent variational characterization of Lipschitz transport map by the second author and Juillet with a convexity property of optimizers in the dual formulation of the entropy-regularized optimal transport (or Schrödinger) problem.
We extend the variational approach to regularity for optimal transport maps initiated by Goldman and the first author to the case of general cost functions. Our main result is an $$\epsilon $$
ϵ
-regularity result for optimal transport maps between Hölder continuous densities slightly more quantitative than the result by De Philippis–Figalli. One of the new contributions is the use of almost-minimality: if the cost is quantitatively close to the Euclidean cost function, a minimizer for the optimal transport problem with general cost is an almost-minimizer for the one with quadratic cost. This further highlights the connection between our variational approach and De Giorgi’s strategy for $$\epsilon $$
ϵ
-regularity of minimal surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.