In the field of the built heritage restoration, engineers have to work with old structures made of badly preserved timber elements. The assessment of timber elements and connections is a major issue for engineers involved in a restoration project. Before thinking about any intervention technics, engineers have to properly understand how the carpentry connections fail, which parameters influence the failure modes (geometry of the joint, mechanical properties of the wood,…) and how the internal forces are distributed into the joint to finally figure out how to design the traditional carpentry connections. The present paper aims to raise those questions focusing on the Single Step Joint design. Even if this common joint between the rafter and the tie beam is geometrically simple, one may pick up three geometrical configurations of Simple Notched Joints from the past till today: the geometrical configuration ideal (GCID), the geometrical configuration perpendicular to the tie beam (GCPTB) and the geometrical configuration perpendicular to the rafter (GCPR). The first one is more recent because it requires a highest accuracy production, and so the use of the new technologies (e.g., CNC). For each one, some general design rules about the geometrical parameters of the Single Step Joint are defined by some European standards (Siem and Jorissen, 2015), but no one details how to design this connection to prevent shear cracks at the heel depth or the compressive crushing at the joint contact surfaces. Hence the design rules and the emergence of failure modes according to the geometrical parameters of the Simple Notched Joint must be defined. In order to check the design equations and the failure modes, lab tests about the three geometrical configurations of the Single Step Joint have been carried out, varying the heel depth, the shear length and the inclination of the rafter.
No abstract
Before coming up with any important decision of intervention in the restoration process of existing buildings, the assessment of the conservation state is required as regards heritage timber structures, and especially, for those that suffered a lack of maintenance in their service life. In that context, three timber roof structures from the Convent of Christ in Tomar, Portugal, have been selected and investigated. To this end, a research methodology has been introduced and applied to these case studies into four main steps: (i) Visual inspection; (ii) Non-destructive wood diagnosis; (iii) Structural safety evaluation; (iv) Prevention and intervention measures. For the visual inspection, every element and joint constituting the roof structures have been received scrutiny through stressing the wood species, the different construction stages, and last but not least, their respective geometry. As regards the encountered pathologies, structural disorders (e.g. accidental failure, serviceability defects...) and wood-deteriorations due to biological agents (e.g. wood-destroying fungi or insects) have been reported, which ineluctably leads to a likely decrease of the mechanical performances of the roof structure. In order to estimate the residual element cross-section and elastic modulus, wood diagnosis has been carried out through using three relevant non-destructive tests: (i) Ultrasonic Pulse Velocity; (ii) Drilling Resistance; (iii) Impact penetration. From the collected data, the three timber roof structures have been modelled on a commercial software in order to check their safety and integrity. Based on those outcomes, some prevention and intervention measures haves been lastly proposed case by case.
Among biological agents, insect attacks may cause severe degradation of timber structures in the service life of buildings which leads to lower mechanical performance and, thus, maintenance problems over time. Additionally, compression perpendicular to the grain always features a weak spot with respect to the long-term mechanical performance of timber members and joints. In the present work, the respective strength and elastic modulus were thus investigated for insect deteriorated wood. Following a standardized geometry, small samples degraded by anobiids were extracted from beams made of sweet chestnut wood (Castanea sativa Mill.) that were removed from service. Visual assessment of the external wood surfaces was then performed to identify areas infested by insects. Afterwards, destructive monotonic compression tests were carried out perpendicularly to the grain on the damaged area to determine the loss of compressive strength and elastic modulus. The experimental results showed that the loss of compressive strength and elastic modulus might be linearly correlated to the wood density loss for small samples infested by insects. Nonetheless, future work should focus on determining accurately the density loss in the insect-deteriorated part through non- or semi-destructive tests, in order to establish stronger relationships with the mechanical properties loss investigated.
When assessing the roof of existing buildings, engineers may be confronted with structural joints badly preserved, for instance the damaged Single Step Joint (SSJ) located at the foot of timber trusses. Since the early appearance of failure modes in this traditional carpentry connection may lead to the collapse of the whole timber truss, the retrofitting of damaged SSJ is then required as an economically-viable intervention to stabilize the roof structure. In consequence, the retrofitting of damaged SSJ with Self-Tapping Screws (STS) has been conducted through the Experimental Campaign in order to explore further different possibilities offered by this recent intervention technique (Sobra et al. (2016)). To this end, two strategies, noted R1 and R2, have been proposed to retrofit the SSJ specimens with STS, which had been previously damaged due to both failure modes, namely the crushing at the front-notch surface and the shear crack in the tie beam (Verbist et al. (2017)). Afterwards, the SSJ specimens retrofitted with STS have been tested under monotonic compression in the rafter in order to pull out their mechanical behaviour encompassing the failure modes, the force-displacement response, the stiffness of the connection, and the ultimate normal force in the rafter. By comparing the mechanical behaviour of retrofitted SSJ specimens with the initial ones from Verbist et al. (2017), the performances of both retrofitting strategies with STS have been discussed. Furthermore, the impact of the shear row splitting on the mechanical behaviour of retrofitted SSJ has been evaluated, by providing some warnings to engineers when intervening in existing timber trusses featuring natural damage such as the shrinkage splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.