The Amyloid Precursor Protein (APP) has been extensively studied as the precursor of the βamyloid peptide (Aβ) peptide, the major component of the senile plaques found in the brain of Alzheimer's disease (AD) patients. However, the function of APP per se in neuronal physiology remains to be fully elucidated. APP is expressed at high levels in the brain. It resembles a cell adhesion molecule or a membrane receptor, suggesting that its function relies on cell-cell interaction and/or activation of intracellular signaling pathways. In this respect, the APP intracellular domain (AICD) was reported to act as a transcriptional regulator. Here, we used a transcriptome-based approach to identify the genes transcriptionally regulated by APP in the rodent embryonic cortex and upon maturation of primary cortical neurons. Surprisingly, the overall transcriptional changes were subtle, but a more detailed analysis pointed to genes clustered in neuronal-activity dependent pathways. In particular, we observed a decreased transcription of Neuronal PAS domain protein 4 (NPAS4) in APP-/-neurons. NPAS4 is an inducible transcription factor (ITF) regulated by neuronal depolarization. The down-regulation of NPAS4 co-occurs with an increased production of the inhibitory neurotransmitter GABA and a reduced expression of the GABA A receptors alpha1. CRISPR-Cas-mediated silencing of NPAS4 in neurons led to similar observations. Patch-clamp investigation did not reveal any functional decrease of GABA A receptors activity, but LTP measurement supported an increased GABA component in synaptic transmission of APP-/-mice. Together, NPAS4 appears to be a downstream target involved in APP-dependent regulation of inhibitory synaptic transmission.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motoneurons. While the principal cause of the disease remains so far unknown, the onset and progression of the pathology are increasingly associated with alterations in the control of cell metabolism. On the basis of the well-known key roles of 5'-adenosine monophosphate-activated protein kinase (AMPK) in sensing and regulating the intracellular energy status, we hypothesized that mice with a genetic deletion of AMPK would develop locomotor abnormalities that bear similarity with those detected in the very early disease stage of mice carrying the ALS-associated mutated gene hSOD1(G93A). Using an automated gait analysis system (CatWalk), we here show that hSOD1(G93A) mice and age-matched mice lacking the neuronal and skeletal muscle predominant α2 catalytic subunit of AMPK showed an altered gait, clearly different from wild type control mice. Double mutant mice lacking AMPK α2 and carrying hSOD1(G93A) showed the same early gait abnormalities as hSOD1(G93A) mice over an age span of 8 to 16 weeks. Taken together, these data support the concept that altered AMPK function and associated bioenergetic abnormalities could constitute an important component in the early pathogenesis of ALS. Therapeutic interventions acting on metabolic pathways could prove beneficial on early locomotor deficits, which are sensitively detectable in rodent models using the CatWalk system.
A critical role has been assigned to protein kinase C (PKC)ε in the control of intracellular calcium oscillations triggered upon activation of type 5 metabotropic glutamate receptor (mGluR5) in cultured astrocytes. Nevertheless, the physiological significance of this particular signalling profile in the response of astrocytes to glutamate remains largely unknown. Considering that kinases are frequently involved in the regulation of G protein-coupled receptors, we have examined a putative link between the nature of the calcium signals and the response regulation upon repeated exposures of astrocytes to the agonist (S)-3,5-dihydroxyphenylglycine. We show that upon repeated mGluR5 activations, a robust desensitization was observed in astrocytes grown in culture conditions favouring the peak-plateau-type response. At variance, in cell cultures where calcium oscillations were predominating, the response was fully preserved even during repeated challenges with the agonist. Pharmacological inhibition of PKCε or genetic suppression of this isoform using shRNA was found to convert an oscillatory calcium profile to a sustained calcium mobilization and this latter profile was subject to desensitization upon repetitive mGluR5 activation. Our results suggest a yet undocumented scheme in which the activity of PKCε contributes to preserve the receptor sensitivity upon repeated or sustained activations. Cover Image for this issue: doi: 10.1111/jnc.13797.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.