Visual counterfactual explanations (VCEs) in image space are an important tool to understand decisions of image classifiers as they show under which changes of the image the decision of the classifier would change. Their generation in image space is challenging and requires robust models due to the problem of adversarial examples. Existing techniques to generate VCEs in image space suffer from spurious changes in the background. Our novel perturbation model for VCEs together with its efficient optimization via our novel Auto-Frank-Wolfe scheme yields sparse VCEs which are significantly more object-centric. Moreover, we show that VCEs can be used to detect undesired behavior of ImageNet classifiers due to spurious features in the ImageNet dataset and discuss how estimates of the data-generating distribution can be used for VCEs. Code is available under https://github. com/valentyn1boreiko/SVCEs_code.
Neural networks have led to major improvements in image classification but suffer from being non-robust to adversarial changes, unreliable uncertainty estimates on out-distribution samples and their inscrutable black-box decisions. In this work we propose RATIO, a training procedure for Robustness via Adversarial Training on In-and Outdistribution, which leads to robust models with reliable and robust confidence estimates on the out-distribution. RATIO has similar generative properties to adversarial training so that visual counterfactuals produce class specific features. While adversarial training comes at the price of lower clean accuracy, RATIO achieves state-of-the-art l2-adversarial robustness on CIFAR10 and maintains better clean accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.