The EU-water framework directive aims at nutrient reductions, since anthropogenically induced eutrophication is a major threat for coastal waters. However, phytoplankton biomass in southern Baltic Sea coastal water bodies (CWB) remains high and the underlying mechanisms are not well understood. Therefore, a CWB data set was analysed regarding changes in phytoplankton biomass and nutrient concentration of nitrogen (N) and phosphorus (P) from 2000 to 2014. It was expected to find imbalances between produced phytoplankton biomass and total nutrient concentrations. Inner CWB were cyanobacteria-dominated and showed up to five times higher chlorophyll a-concentrations compared to outer CWB with similar total phosphorus-concentrations. Phytoplankton tended to be P-limited during spring and N-limited during summer. Phytoplankton biomass and nutrient concentrations were even higher during very humid years, which indicated a close coupling of the CWB with their catchment areas. This study suggests that re-mesotrophication efforts need to consider the importance of changed phytoplankton composition and nutrient availabilities.
The main pathways for phosphorus flux from land to sea are particle-associated (erosion) and dissolved runoff (rivers, groundwater, and agricultural drainage systems). These pathways can act as diffused sources for aquatic systems and support primary production, therefore, counteracting the efforts aimed at reducing phosphorus input from point sources such as sewage treatment plants. Phosphorus supports primary production in the water column and can elevate phytoplankton and macrophyte growth. Coastal wetlands with emerged (Phragmites australis) and submerged (Stuckenia pectinata and Chara sp.) macrophytes can affect phosphorus fluxes in the land-water transitional zone. The macrophytes have the potential to act as a buffer for phosphorus run-off. The aim of this study was to determine the phosphorus stocks in the transitional land-sea zone of a cold temperate lagoon at the southern Baltic Sea. Phosphorus in macrophytes, water samples, and phytoplankton growth were analyzed along a gradient moving away from the wetland. The phosphorus stocks in the above ground biomass of the Phragmites plants were the highest at the end of August and with more than 8000mgPm in the interior zone of the wetland, threefold the amount of P in Phragmites plant tissue at the wetland fringe. The submerged macrophytes stored only 300mgPm, close to the wetland. Concentrations of soluble reactive phosphorus in the water column were higher in the zones of emerged macrophytes than in the zones of submerged macrophytes and decreased along the land-sea transect. Phytoplankton could grow proximal to the wetland during all seasons, but not further away. This study indicates that macrophytes can act as phosphorus sinks. However, short-term releases of phosphate within the Phragmites wetland have the potential to lead to phytoplankton growth. Phytoplankton can use these nutrient pulses either immediately or later, and support high biomass and turbidity within the system.
Baltic coastal lagoons are severely threatened by eutrophication. To evaluate the impact of eutrophication on macrophytobenthos, we compared the seasonal development in macrophytobenthic composition, biomass and production, water column parameters (light, nutrients), phytoplankton biomass and production in one mesotrophic and one eutrophic German coastal lagoon. We hypothesized that light availability is the main driver for primary production, and that net primary production is lower at a higher eutrophication level. In the mesotrophic lagoon, macrophytobenthic biomass was much higher with distinct seasonal succession in species composition. Filamentous algae dominated in spring and late summer and probably caused reduced macrophytobenthic biomass and growth during early summer, thus decreasing vegetation stability. Light attenuation was far higher in the eutrophic lagoon, due to high phytoplankton densities, explaining the low macrophytobenthic biomass and species diversity in every season. Areal net primary production was far lower in the eutrophic lagoon. The “paradox of enrichment” hypothesis predicts lower production at higher trophic levels with increased nutrient concentrations. Our results prove for the first time that this hypothesis may be valid already at the primary producer level in coastal lagoons.
Background: There are various ways for nutrients to enter aquatic ecosystems causing eutrophication. Phosphorus deposition through precipitation can be one pathway, besides point sources, like rivers, and diffuse runoff from land. It is also important to evaluate recent trends and seasonal distribution patterns of phosphorus deposition, as important diffuse source. Therefore, a long-term dataset was analysed including 23 years of daily phosphate bulk depositional rates and 4.5 years of total phosphorus (TP) bulk depositional rates. The study area was at the coastline of the southern Baltic Sea, an area which shows severe eutrophication problems. Results:The median daily deposition of phosphate was 56 µg m −2 day −1 (1.8 µmol m −2 day −1 ) at 4222 rain events. The median annual sum of phosphate deposition was 16.7 kg km −2 a −1 , which is comparable to other European areas. The annual TP deposition depended strongly on methodological aspects, especially the sample volume. The median TP-depositional rates ranged between 19 and 70 kg km −2 a −1 depending on the calculated compensation for missing values, as not every rain event could be measured for TP. The highest TP-depositional rates were measured during summer (e.g. up to 9 kg TP km −2 in August 2016). There was no trend detectable for phosphate-and TP-depositional rates over the sampled period.Conclusions: Deposition of P is a considerable nutrient flux for coastal waterbodies. Median total annual deposition contributed 3 t (phosphate) to 10 t (TP) per year into the adjacent lagoon system, being therefore close to annual riverine inflows of 10 t phosphate and 20 t TP per year. However, the impact of precipitation is predicted to be higher in lagoon parts with fewer point sources for phosphorus, if equally distributed over the area of interest. which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.