The complex metallurgical interrelationships in the production of ductile cast iron can lead to enormous differences in graphite formation and local microstructure by small variations during production. Artificial intelligence algorithms were used to describe graphite formation, which is influenced by a variety of metallurgical parameters. Moreover, complex physical relationships in the formation of graphite morphology are also controlled by boundary conditions of processing, the effect of which can hardly be assessed in everyday foundry operations. The influence of relevant input parameters can be predetermined using artificial intelligence based on conditions and patterns that occur simultaneously. By predicting the local graphite formation, measures to stabilise production were defined and thereby the accuracy of structure simulations improved. In course of this work, the most important dominating variables, from initial charging to final casting, were compiled and analysed with the help of statistical regression methods to predict the nodularity of graphite spheres. We compared the accuracy of the prediction by using Linear Regression, Gaussian Process Regression, Regression Trees, Boosted Trees, Support Vector Machines, Shallow Neural Networks and Deep Neural Networks. As input parameters we used 45 characteristics of the production process consisting of the basic information including the composition of the charge, the overheating time, the type of melting vessel, the type of the inoculant, the fading, and the solidification time. Additionally, the data of several thermal analysis, oxygen activity measurements and the final chemical analysis were included.Initial programme designs using machine learning algorithms based on neural networks achieved encouraging results. To improve the degree of accuracy, this algorithm was subsequently adapted and refined for the nodularity of graphite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.