In the human cortex, event-related potentials (ERPs) are triggered in response to sensory, cognitive or motor stimuli. Due to the inherent difficulties of conducting invasive mechanistic studies in human subjects, little is known as to the precise neurophysiological mechanisms that lead to their manifestation. By contrast, although much is known about synaptic and neural mechanisms that underlie information processing in rodents, very few studies have addressed to what extent ERPs are comparable in rodents and humans. Here, we explored this by triggering ERPs in both species during the passive observation of visuospatial imagery, shown in an oddball-like manner, using an experimental design that was equivalent. Several ERP-components were identified in the rodent cohort, corresponding, for example, to the human P1, N1, and P2. ERPs that are likely to reflect a rodent N2 and P300 were also detected. Deviance, as well as repetition effects were evident in both species, whereby rodent ERPs displayed more immediate response alterations to repeated stimuli and humans showed more gradual response shifts. These results indicate that humans and rodents may implement similar strategies for the passive perception and initial processing of visuospatial imagery, despite clear differences in their sensory and cognitive capacities.
In addition to its role in visuospatial navigation and the generation of spatial representations, in recent years, the hippocampus has been proposed to support perceptual processes. This is especially the case where high‐resolution details, in the form of fine‐grained relationships between features such as angles between components of a visual scene, are involved. An unresolved question is how, in the visual domain, perspective‐changes are differentiated from allocentric changes to these perceived feature relationships, both of which may be argued to involve the hippocampus. We conducted functional magnetic resonance imaging of the brain response (corroborated through separate event‐related potential source‐localization) in a passive visuospatial oddball‐paradigm to examine to what extent the hippocampus and other brain regions process changes in perspective, or configuration of abstract, three‐dimensional structures. We observed activation of the left superior parietal cortex during perspective shifts, and right anterior hippocampus in configuration‐changes. Strikingly, we also found the cerebellum to differentiate between the two, in a way that appeared tightly coupled to hippocampal processing. These results point toward a relationship between the cerebellum and the hippocampus that occurs during perception of changes in visuospatial information that has previously only been reported with regard to visuospatial navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.