Tight junctions (TJs) are essential components of epithelial tissues connecting neighboring cells to provide protective barriers. While their general function to seal compartments is well understood, their role in collective cell migration is largely unexplored. Here, the importance of the TJ zonula occludens (ZO) proteins ZO1 and ZO2 for epithelial migration is investigated employing video microscopy in conjunction with velocimetry, segmentation, cell tracking, and atomic force microscopy/spectroscopy. The results indicate that ZO proteins are necessary for fast and coherent migration. In particular, ZO1 and 2 loss (dKD) induces actomyosin remodeling away from the central cortex towards the periphery of individual cells, resulting in altered viscoelastic properties. A tug-of-war emerges between two subpopulations of cells with distinct morphological and mechanical properties: 1) smaller and highly contractile cells with an outward bulging apical membrane, and 2) larger, flattened cells, which, due to tensile stress, display a higher proliferation rate. In response, the cell density increases, leading to crowding-induced jamming and more small cells over time. Co-cultures comprising wildtype and dKD cells migrate inefficiently due to phase separation based on differences in contractility rather than differential adhesion. This study shows that ZO proteins are necessary for efficient collective cell migration by maintaining tissue fluidity and controlling proliferation.
Tight junctions are pivotal components of epithelial tissues connecting neighboring cells to provide protective barriers. However, explicit knowledge of their role during other crucial biological processes, such as collective cell migration, remains sparse. Here, the importance of the tight junction proteins ZO1 and ZO2 for epithelial migration is investigated employing video microscopy in conjunction with velocimetry, segmentation, cell tracking, and atomic force microscopy/spectroscopy. The results indicate that ZO proteins are necessary for fast and coherent migration. In particular, ZO1 and 2 loss induces actomyosin remodeling away from the central cortex towards the periphery of individual cells, resulting in altered viscoelastic properties. A tug-of-war emerges between two cell populations with distinct morphological and mechanical properties: 1) smaller and highly contractile cells with an outwards bulged apical membrane, and 2) larger, flattened cells, which, due to tensile stress, display a higher proliferation rate. In response, the cell density increases, leading to crowding-induced jamming and more small cells over time. These smaller cells are particularly immobile and therefore drive jamming. Knockout of only ZO1 induces a similar but less pronounced behavior. This study shows that ZO proteins are necessary for efficient collective cell migration by maintaining tissue fluidity and controlling proliferation.
Cellular sorting and pattern formation are crucial for many biological processes such as development, tissue regeneration, and cancer progression. Prominent physical driving forces for cellular sorting are differential adhesion and contractility. Here, we studied the segregation of epithelial cocultures containing highly contractile, ZO1/2-depleted MDCKII cells (dKD) and their wild-type (WT) counterparts using multiple quantitative, high-throughput methods to monitor their dynamical and mechanical properties. We observe a time-dependent segregation process governed mainly by differential contractility on short (<5 h) and differential adhesion on long (>5 h) timescales. The overly contractile dKD cells exert strong lateral forces on their WT neighbors, thereby apically depleting their surface area. Concomitantly, the tight junction–depleted, contractile cells exhibit weaker cell–cell adhesion and lower traction force. Drug-induced contractility reduction and partial calcium depletion delay the initial segregation but cease to change the final demixed state, rendering differential adhesion the dominant segregation force at longer timescales. This well-controlled model system shows how cell sorting is accomplished through a complex interplay between differential adhesion and contractility and can be explained largely by generic physical driving forces.
Cellular sorting and pattern formation is crucial for many biological processes such as development, tissue regeneration, and cancer progression. Prominent physical driving forces for cellular sorting are differential adhesion and contractility. Here, we studied the segregation of epithelial co-cultures containing highly contractile, ZO1/2-depleted MDCKII cells (dKD) and their wildtype (WT) counterparts using multiple quantitative, high-throughput methods to monitor their dynamical and mechanical properties. We observe a time-dependent segregation process, governed mainly by differential contractility on short (< 5 h) and differential adhesion on long (> 5 h) time scales, respectively. The overly contractile dKD cells exert strong lateral forces on their WT neighbors, thereby apically depleting their surface area. This is reflected in a six-fold difference in excess surface area between both cell types. The lateral forces lead to a four- to six-fold increase in tension at all junctions that are in contact with the contractile cells including the interface between heterotypic cell-cell contacts. Concomitantly, the tight junction-depleted, contractile cells exhibit weaker cell-cell adhesion. Drug-induced contractility reduction delays the initial segregation but ceases to change the final demixed state, rendering differential adhesion the dominant segregation force at longer time scales. This well-controlled model system shows how cell sorting is accomplished through a complex interplay between differential adhesion and contractility and can be explained largely by generic physical driving forces.
Collective Cell Migration In article number 2100478 by Tabea A. Oswald, Andreas Janshoff, and co‐workers, it is shown that tight junction ZO proteins maintain epithelial cell sheet fluidity and thereby ensure efficient collective migration. Cell layers lacking ZO proteins lose viscoelastic integrity due to actomyosin remodeling, inducing a severe mechanical imbalance and increased proliferation. Extremely contractile, small cells emerge in a mechanism reminiscent of a tug of war and particularly impair migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.