Recent work has shown how to improve delete relaxation heuristics by computing relaxed plans, i.e., the hFF heuristic, in a compiled planning task PiC which represents a given set C of fact conjunctions explicitly. While this compilation view of such partial delete relaxation is simple and elegant, its meaning with respect to the original planning task is opaque, and the size of PiC grows exponentially in |C|. We herein provide a direct characterization, without compilation, making explicit how the approach arises from a combination of the delete-relaxation with critical-path heuristics. Designing equations characterizing a novel view on h+ on the one hand, and a generalized version hC of hm on the other hand, we show that h+(PiC) can be characterized in terms of a combined hcplus equation. This naturally generalizes the standard delete-relaxation framework: understanding that framework as a relaxation over singleton facts as atomic subgoals, one can refine the relaxation by using the conjunctions C as atomic subgoals instead. Thanks to this explicit view, we identify the precise source of complexity in hFF(PiC), namely maximization of sets of supported atomic subgoals during relaxed plan extraction, which is easy for singleton-fact subgoals but is NP-complete in the general case. Approximating that problem greedily, we obtain a polynomial-time hCFF version of hFF(PiC), superseding the PiC compilation, and superseding the modified PiCce compilation which achieves the same complexity reduction but at an information loss. Experiments on IPC benchmarks show that these theoretical advantages can translate into empirical ones.
Several known heuristic functions can capture the input at different levels of precision, and support relaxation-refinement operations guaranteeing to converge to exact information in a finite number of steps. A natural idea is to use such refinement online, during search, yet this has barely been addressed. We do so here for local search, where relaxation refinement is particularly appealing: escape local minima not by search, but by removing them from the search surface. Thanks to convergence, such an escape is always possible. We design a family of hill-climbing algorithms along these lines. We show that these are complete, even when using helpful actions pruning. Using them with the partial delete relaxation heuristic hCFF, the best-performing variant outclasses FF's enforced hill-climbing, outperforms FF, outperforms dual-queue greedy best-first search with hFF, and in 6 IPC domains outperforms both LAMA and Mercury.
Many planning problems are too hard to solve optimally. In bounded-cost search, one attempts to find, as quickly as possible, a plan that costs no more than a user-provided absolute cost bound. Several algorithms have been previously proposed for this setting, including Potential Search (PTS) and Bounded-cost Explicit Estimation Search (BEES). BEES attempts to improve on PTS by predicting whether nodes will lead to plans within the cost bound or not. This paper introduces a relatively simple algorithm, Expected Effort Search (XES), which uses not just point estimates but belief distributions in order to estimate the probability that a node will lead to a plan within the bound. XES's expansion order minimizes expected search time in a simplified formal model. Experimental results on standard planning and search benchmarks show that it consistently exhibits strong performance, outperforming both PTS and BEES. We also derive improved variants of BEES that can exploit belief distributions. These new methods advance the recent trend of taking advantage of uncertainty estimates in deterministic single-agent search.
A successful partial delete relaxation method is to compute hFF in a compiled planning task PiC which represents a set C of conjunctions explicitly. While this compilation view of such partial delete relaxation is simple and elegant, its meaning with respect to the original planning task is opaque. We provide a direct characterization of h+(PiC), without compilation, making explicit how it arises from a "marriage" of the critical-path heuristic hm with (a somewhat novel view of) h+. This explicit view allows us to derive a direct characterization of hFF(PiC), which in turn allows us to compute a version of that heuristic function in time polynomial in |C|.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.