Maintaining stability while walking on arbitrary surfaces or dealing with external perturbations is of great interest in humanoid robotics research. Increasing the system’s autonomous robustness to a variety of postural threats during locomotion is the key despite the need to evaluate noisy sensor signals. The equations of motion are the foundation of all published approaches. In contrast, we propose a more adequate evaluation of the equations of motion with respect to an arbitrary moving reference point in a non-inertial reference frame. Conceptual advantages are, e.g., getting independent of global position and velocity vectors estimated by sensor fusions or calculating the imaginary zero-moment point walking on different inclined ground surfaces. Further, we improve the calculation results by reducing noise-amplifying methods in our algorithm and using specific characteristics of physical robots. We use simulation results to compare our algorithm with established approaches and test it with experimental robot data.
Maintaining stability while walking on arbitrary surfaces or dealing with external perturbations is of great interest in humanoid robotics research. Increasing the system's autonomous robustness to variety of postural threats during locomotion is the key despite the need to evaluate noisy sensor signals. The equations of motion are the foundation of all published approaches. In contrast, we propose a more adequate evaluation of the equations of motion with respect to an arbitrary moving reference point in a non-inertial reference frame. We use simulation results to compare our algorithm with established approaches and test it with physical robot data. Conceptual advantages are, e.g., getting independent of global positions and velocity vectors estimated by sensor fusions or calculating the imaginary zero-moment point walking on different inclined ground surfaces. Further, we improve the calculation results by using specific characteristics of physical robots and reducing noise amplifying methods in our algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.