A novel and versatile shape memory ink system allowing 4D printing with light at the macroscale as well as the microscale is presented. Digital light processing (DLP) and direct laser writing (DLW) are selected as suitable 3D printing technologies to cover both regimes. First, a system based on monofunctional isobornyl acrylate and two crosslinkers consisting of a soft and a hard diacrylate is identified and proven to be compatible with both printing techniques. Employing DLP, a large variety of structures exhibiting distinct complexity is printed. These structures range from simple frames to more demanding 3D geometries such as double platform structures, infinity rings, or cubic grids. The shape memory effect is demonstrated for all the 3D geometries. Excellent shape fixity as well as recovery and repeatability is shown. Furthermore, the formulation is adapted for fast 4D printing at the microscale using DLW. Importantly, the 4D printed microstructures display remarkable shape memory properties. The possibility of trapping and releasing microobjects, such as microspheres, is ultimately demonstrated by designing, smart box-like 4D microstructures that can be thermally actuated-evidencing the versatility and potential of the reported system.
Manufacturing programmable materials, whose mechanical properties can be adapted on demand, is highly desired for their application in areas ranging from robotics, to biomedicine, or microfluidics. Herein, the inclusion of dynamic and living bonds, such as alkoxyamines, in a printable formulation suitable for two‐photon 3D laser printing is exploited. On one hand, taking advantage of the dynamic covalent character of alkoxyamines, the nitroxide exchange reaction is investigated. As a consequence, a reduction of the Young´s Modulus by 50%, is measured by nanoindentation. On the other hand, due to its “living” characteristic, the chain extension becomes possible via nitroxide mediated polymerization. In particular, living nitroxide mediated polymerization of styrene results not only in a dramatic increase of the volume (≈8 times) of the 3D printed microstructure but also an increase of the Young's Modulus by two orders of magnitude (from 14 MPa to 2.7 GPa), while maintaining the shape including fine structural details. Thus, the approach introduces a new dimension by enabling to create microstructures with dynamically tunable size and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.