SummaryCollaborative robots have to adapt its motion plan to a dynamic environment and variation of task constraints. Currently, they detect collisions and interrupt or postpone their motion plan to prevent harm to humans or objects. The more advanced strategy proposed in this article uses online trajectory optimization to anticipate potential collisions, task variations, and to adapt the motion plan accordingly. The online trajectory planner pursues a model predictive control approach to account for dynamic motion objectives and constraints during task execution. The prediction model relates reference joint velocities to actual joint positions as an approximation of built‐in robot tracking controllers. The optimal control problem is solved with direct collocation based on a hypergraph structure, which represents the nonlinear program and allows to efficiently adapt to structural changes in the optimization problem caused by moving obstacles. To demonstrate the effectiveness of the approach, the robot imitates pick‐and‐place tasks while avoiding self‐collisions, semistatic, and dynamic obstacles, including a person. The analysis of the approach concerns computation time, constraint violations, and smoothness. It shows that after model identification, order reduction, and validation on the real robot, parallel integrators with compensation for input delays exhibit the best compromise between accuracy and computational complexity. The model predictive controller can successfully approach a moving target configuration without prior knowledge of the reference motion. The results show that pure hard constraints are not sufficient and lead to nonsmooth controls. In combination with soft constraints, which evaluate the proximity of obstacles, smooth and safe trajectories are planned.
Trajectory optimization is a promising method for planning trajectories of robotic manipulators. With the increasing success of collaborative robots in dynamic environments, the demand for online planning methods grows and offers new opportunities as well as challenges for trajectory optimization. Special requirements in terms of real-time capabilities are one of the greatest difficulties. Optimizing a short planning horizon instead of an entire trajectory is one approach to reduce computation time, which nonetheless separates the optimality of local and global solutions. This contribution introduces, on the one hand, Extended Initialization as a new approach that reduces the risk of local minima and aims at improving the quality of the global trajectory. On the other hand, the particularly critical cases in which local solutions lead to standstills are mitigated by globally guiding local solutions. The evaluation performs four experiments with comparisons to established methods like STOMP or PRM* and demonstrates the effectiveness of both approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.