Photogenerated molecular spin systems hold great promise for applications in quantum information science because they can be prepared in well-defined spin states at modest temperatures, they often exhibit long coherence times, and their properties can be tuned by chemical synthesis. Here, we investigate a molecular spin system composed of a 1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PDI) chromophore covalently linked to a stable nitroxide radical (TEMPO) by optical and electron paramagnetic resonance (EPR) techniques. Upon photoexcitation of the spin system, a quartet state is formed as confirmed by transient nutation experiments. This quartet state has spin polarization lifetimes longer than 0.1 ms and is characterized by relatively long coherence times of ∼1.8 μs even at 80 K. Rabi oscillation experiments reveal that more than 60 single-qubit logic operations can be performed with this system at 80 K. The large magnitude of the nitroxide 14 N hyperfine coupling in the quartet state of PDI-TEMPO is resolved in the transient EPR spectra and leads to a further splitting of the quartet state electron spin sublevels. We discuss the properties of this photogenerated multilevel system, comprising 12 electron−nuclear spin states, in the context of its viability as a qubit for applications in quantum information science.
Owing to their exceptional photophysical properties and high photostability, perylene diimide (PDI) chromophores have found various applications as building blocks of materials for organic electronics. In many light-induced processes in...
To access the hitherto almost unknown class of clustered transition metal carbonyl cations, the trimetal dodecacarbonyls M3(CO)12 (M = Ru, Os) were reacted with the oxidant Ag+[WCA]−, but yielded the silver complexes [Ag{M3(CO)12}2]+[WCA]−...
130 years after Mond discovered the first homoleptic carbonyl complex Ni(CO)4, we report on a [Ni(CO)4].+ salt as the first synthesis of any homoleptic nickel carbonyl cation in the condensed phase. It was prepared by oxidation of nickel metal with the synergistic oxidant Ag[F{Al(ORF)3}2]/0.5 I2 (RF=C(CF3)3) in CO atmosphere. This D2d‐symmetric metalloradical represents the last missing entry among the structurally characterized homoleptic carbonyl cations of Groups 6 to 11. Additionally, the nickel tricarbonyl‐nitrosyl cation [Ni(CO)3(NO)]+ was obtained by usage of NO[F{Al(ORF)3}2] and all products were fully characterized by means of IR, Raman, NMR/EPR, single crystal and powder XRD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.