We present results of tensor-network simulations of the three-dimensional đť‘‚ (2) model at nonzero chemical potential and temperature, which were computed using the higher-order tensorrenormalization-group method (HOTRG). This necessitated enhancements to the HOTRG blocking procedure to reduce the truncation error in the case of anisotropic tensors. Moreover, the construction of the truncated vector spaces was adapted to strongly reduce the effect of systematic errors in the computation of observables using the finite-difference method. Our (improved) HOTRG results for the evolution of the number density with the chemical potential are in agreement with results obtained with the worm algorithm, and both the Silver Blaze phenomenon at zero temperature and the temperature dependence of the number density can be adequately reproduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.