Background: Three-dimensional printing is a rapidly developing technology across all industries. In medicine recent developments include 3D bioprinting, personalized medication and custom prosthetics and implants. To ensure safety and long-term usability in a clinical setting, it is essential to understand material specific properties. This study aims to analyze possible surface changes of a commercially available and approved DLP 3D printed definitive restoration material for dentistry after three-point flexure testing. Furthermore, this study explores whether Atomic Force Microscopy (AFM) is a feasible method for examination of 3D printed dental materials in general. This is a pilot study, as there are currently no studies that analyze 3D printed dental materials using an AFM. Methods: The present study consisted of a pretest followed by the main test. The resulting break force of the preliminary test was used to determine the force used in the main test. The main test consisted of atomic force microscopy (AFM) surface analysis of the test specimen followed by a three-point flexure procedure. After bending, the same specimen was analyzed with the AFM again, to observe possible surface changes. Results: The mean root mean square (RMS) roughness of the segments with the most stress was 20.27 nm (±5.16) before bending, while it was 26.48 nm (±6.67) afterward. The corresponding mean roughness (Ra) values were 16.05 nm (±4.25) and 21.19 nm (±5.71) Conclusions: Under three-point flexure testing, the surface roughness increased significantly. The p-value for RMS roughness was p = 0.003, while it was p = 0.006 for Ra. Furthermore, this study showed that AFM surface analysis is a suitable procedure to investigate surface changes in 3D printed dental materials.
Background The purpose of this investigation was to compare shear force of different glass-ionomer cements on 3D printed interim material in combination with and without surface pretreatment. Material and Methods 120 rectangular specimens made of printable provisional material (Bego, Bremen, Germany) were used. After post-processing the specimens were blasted with aluminum oxide 110µm (Bego, Bremen, Germany). Extra 120 non-surface treated specimens were used as an experimental negative test group. All 240 specimens were divided randomly into 6 groups. All were cemented with a compressive load of 20 N using universal testing machine Z010 (Zwick/Roell, Ulm, Germany) to ensure a comparable cementing process. Each of the six groups were cemented with different cements (CX Plus (Shofu, Ratingen, Germany), Vivaglass CEM PL (Ivoclar Vivadent AG, Schaan, Liechtenstein), Aqua Cem (Dentsply Sirona, Bensheim, Germany), Ketac Cem (3M, Neuss, Germany), Meron Plus AC (Voco, Cuxhaven, Germany), and Fuji 1 (GC, Tokyo, Japan). Shear force test was performed, and forces were statistically analyzed via Anova test (significance level p <0.001). Results All the pre-treated specimens showed a significantly higher bonding strength compared to not pretreated. Meron Plus AC showed the highest shear overall force. The Anova test showed a significant difference between all pretreated study groups ( p <0.001). Conclusions An increase of the necessary forces for all groups was shown in pretreated group. Within the limitations of this study, a surface pretreatment is recommended when bonding a 3D interim material with glass ionomer cements. Key words: Shear force, 3D printing, glass ionomer cement, mechanical evaluation, CAD/CAM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.