This paper presents a focusing schlieren system designed for the investigation of transonic turbine tip-leakage flows. In the first part, the functional principle and the design of the system are presented. Major design considerations and necessary trade-offs are discussed. The key optical properties, e.g., depth of focus, are verified by means of a simple bench test. In the second part, results of an idealized tip-clearance model as well as linear cascade tests at engine representative Reynolds and Mach numbers are presented and discussed. The focusing schlieren system, designed for minimum depth of focus, has been found to be well suited for the investigation of three-dimensional transonic flow fields in turbomachinery applications. The schlieren images show the origin and growth of the tip-leakage vortex on the blade suction side. A complex shock system was observed in the tip region, and the tip-leakage vortex was found to interact with the suction side part of the trailing edge shock system. The results indicate that transonic vortex shedding is suppressed in the tip region at an exit Mach number around M 2 , i s = 0.8.
This paper presents results of a detailed investigation of turbine tip-leakage flows at high Mach numbers. The experimental work was carried out using a small blow-down wind tunnel. An idealized blade test section was used to study blade tip-clearance effects in transonic conditions. Unshrouded blade tips are considered and different tip gap heights are investigated. A high blade exit Mach number of Me = 2 was selected deliberately. While conventional transonic turbine stages generally operate at lower supersonic exit Mach numbers, the conditions are representative for ORC turbines. Both experimental and numerical results are presented in this contribution. The results indicate, that tip leakage flow under transonic conditions leads to a complex three-dimensional flow field. A strong interaction between tip gap vortex and trailing edge shocks was observed, that also had a profound effect on the base region. While no final statement on losses could be made in the present configuration, the results indicate a weakened shock system.
A cost-effective test rig is presented that allows for the experimental investigation of supersonic flows for educational purposes. The individual units for the test rig were designed and built by students as part of their degrees. The test rig allows for operating times up to 10 seconds and features a nozzle test section, that can house different test objects. The divergent part of the de Laval nozzle geometry is designed using the method of characteristics for planar two-dimensional supersonic flow. State of the art 3D printing technology has been utilized to manufacture the nozzle geometry. Both optical and pneumatic measurement techniques have been adopted for the current setup. A z-type schlieren setup with two parabolic mirrors is used to perform flow visualization. The entire run can be recorded with a digital high speed camera. Stagnation pressure and temperature are measured in the pressure reservoir. Measurements are used to demonstrate basic thermodynamic effects such as the depressurization of gas-filled pressure vessels. Schlieren photography is used to graphically derive the Mach number and some aspects of Mach waves, oblique shock waves, and expansion waves are discussed. Finally, some effects of surface roughness on the flow field are addressed in this paper. Initial tests with the untreated nozzle geometry led to a fine pattern of very weak oblique shock waves in the supersonic part of the nozzle, that were caused by the finite layer thickness of the printer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.