Holographic optical tweezers typically require microscope objectives with high numerical aperture and thus usually suffer from the disadvantage of a small field of view and a small working distance. We experimentally investigate an optical mirror trap that is created after reflection of two holographically shaped collinear beams on a mirror. This approach combines a large field of view and a large working distance with the possibility to manipulate particles in a large size range, since it allows to use a microscope objective with a numerical aperture as low as 0.2. In this work we demonstrate robust optical three-dimensional trapping in a range of 1mm x 1mm x 2mm with particle sizes ranging from 1.4 mum up to 45 mum. The use of spatial light modulator based holographic methods to create the trapping beams allows to simultaneously trap many beads in complex, dynamic configurations. We present measurements that characterize the mirror traps in terms of trap stiffness, maximum trapping force and capture range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.