Advanced chlor‐alkali electrolysis with oxygen depolarized cathodes (ODC) requires 30 % less electrical energy than conventional hydrogen‐evolution‐based technology. Herein, we confirm that the activities of hydroxide and water govern the ODC performance and its dynamics. Experimental characterization of ODC under varying mass transfer conditions on the liquid side reveals large differences in the polarization curves as well as in potential step responses of the electrodes. Under convective transport in the liquid electrolyte, the ODC is not limited by mass transfer in its current density at j>3.9 kA m−2, whereas transport limitations are already reached at j≈1.3 kA m−2 with a stagnant electrolyte. Since gas phase conditions do not differ significantly between the measurements, these results are in contrast the common assumption that oxygen supply determines ODC performance. A dynamic model reveals the strong influence of the electrolyte mass transfer conditions on oxygen availability and thus performance. Dynamic responses of the current density to step‐wise potential changes are dominated by the mass transport of water and hydroxide ions, which is by orders of magnitude faster with convective electrolyte flow. Without convective liquid electrolyte transport, a high accumulation of hydroxide ions significantly lowers the oxygen solubility. Thus, a fast mass transport of water and hydroxide is essential for high ODC performance and needs to be ensured for technical applications. The predicted accumulation of ions is furthermore validated experimentally by means of scanning electrochemical microscopy. We also show how the outlined processes can explain the distinctively different potential step responses with and without electrolyte convection.
The Cover Feature shows the identified performance limitation in oxygen depolarized cathodes, which are key components for energy‐saving chlor‐alkali electrolysis. A one‐dimensional, dynamic three‐phase model aided in elucidating that the overall performance of the electrode is limited by the accumulation and slow removal of the produced hydroxide ions from the reaction zone. The high hydroxide ion concentration significantly decreases solubility and transport of the main reactant (oxygen) to the reaction zone and, thus, limits the maximum current. More information can be found in the Full Paper by Röhe et al. on page 2373 in Issue 11, 2019 (DOI: 10.1002/cssc.201900312).
Oxygen depolarized cathodes (ODCs) are key components of alkaline fuel cells and metal–air batteries or of chlor‐alkaline electrolysis, but suffer from limited oxygen availability at the reaction zone. Dynamic analysis is a highly suitable approach to identify the underlying causes, especially the limiting steps and process interactions in such gas diffusion electrodes. Herein, a one‐dimensional, dynamic, three‐phase model for analyzing the oxygen reduction reaction in silver‐based ODCs is presented. It allows for a detailed evaluation of the electrochemical reaction, the mass transport processes, and their interaction. The model also reveals that the depletion of reactant oxygen in the liquid electrolyte is caused by the current‐dependent change of the gas–liquid equilibrium as the limiting subprocess. The phase equilibrium, in turn, depends on the slow mass transport of water and hydroxide ions in the liquid phase. Key parameters are the location or size of the gas–liquid interface within the electrode. Profiles of local concentrations and partial pressures of different species reveal a steep gradient of oxygen in the liquid phase, but no limitation in oxygen mass transport in the gas phase. Dynamic simulations with potential steps allowed the identification of different time constants to separate overlapping processes. Accordingly, the mass transport of water and hydroxide ions was identified as the slowest process that strongly influenced the dynamic response of all species, including oxygen, and of the current. The characteristic time constant of the mass transport of water and hydroxide ions across the liquid phase within the ODC is determined to be τmt,0.166667emnormalH2normalO
≈0.176 s, whereas the time constant of oxygen mass transport into the reaction zone is several magnitudes smaller: τmt,0.166667emnormalO2
≈1.70×10−6 s. Finally, a sensitivity analysis confirms that the overall performance is best improved by adjusting mass transport properties in the liquid phase.
Porous carbon felts (CFs) are widely used electrode materials for vanadium redox flow batteries (VRFBs). These materials differ in their precursor material, thickness, or graphitization degree and demonstrate broad differences in electrochemical performance. Prior to operation, an activation step, such as acid or heat treatment (HT), is commonly performed to improve their performance. A thermal treatment in air functionalizes the surface of the electrode and improves reaction kinetics as well as the wettability of the electrode. Herein, pristine and heat‐treated CFs are compared regarding their electrolyte wetting behavior for the use in VRFB. Contact angle (CA) measurements are conducted ex situ to investigate the effect of the HT. Furthermore, the porous CFs are examined in situ with an in‐house‐built flow cell regarding their invasion behavior with different types of electrolytes by X‐ray radiography. Additionally, the distribution of the electrolyte inside the felts is investigated by X‐ray tomography. The results demonstrate the effect of the HT and choice of electrolyte on the wetting behavior and electrolyte distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.