In most diploids the centromere-specific histone H3 (CENH3), the assembly site of active centromeres, is encoded by a single copy gene. Persistance of two CENH3 paralogs in diploids species raises the possibility of subfunctionalization. Here we analysed both CENH3 genes of the diploid dryland crop cowpea. Phylogenetic analysis suggests that gene duplication of CENH3 occurred independently during the speciation of Vigna unguiculata. Both functional CENH3 variants are transcribed, and the corresponding proteins are intermingled in subdomains of different types of centromere sequences in a tissue-specific manner together with the kinetochore protein CENPC. CENH3.2 is removed from the generative cell of mature pollen, while CENH3.1 persists. CRISPR/Cas9-based inactivation of CENH3.1 resulted in delayed vegetative growth and sterility, indicating that this variant is needed for plant development and reproduction. By contrast, CENH3.2 knockout individuals did not show obvious defects during vegetative and reproductive development. Hence, CENH3.2 of cowpea is likely at an early stage of pseudogenization and less likely undergoing subfunctionalization.
Short title: Functional characterization of cowpea CENH3sOne-sentence summary: The two paralogous centromeric histones (CENH3) of cowpea contribute unequal to the function of the centromere. AbstractThe legume cowpea (Vigna unguiculata, 2n=2x=22) has significant tolerance to drought and heat stress. Here we analysed and manipulated cowpea centromere-specific histone H3 (CENH3) genes, aiming to establish a centromere-based doubled-haploid method for use in genetic improvement of this dryland crop in future. Cowpea encodes two functional CENH3 variants (CENH3.1 and CENH3.2) and two CENH3 pseudogenes. Phylogenetic analysis suggests that gene duplication of CENH3 occurred independently during the speciation of V. unguiculata and the related V. mungo without a genome duplication event. Both functional cowpea CENH3 variants are transcribed, and the corresponding proteins are intermingled in subdomains of different types of centromere sequences in a tissue-specific manner together with the outer kinetochore protein CENPC. CENH3.2 is removed from the generative cell of mature pollen, while CENH3.1 persists. Differences between both CENH3 paralogs are restricted to the N-terminus. The complete CRISPR/Cas9-based inactivation of CENH3.1 resulted in delayed vegetative growth and sterility, indicating that this variant is needed for plant development and reproduction. By contrast, CENH3.2 knockout individuals did not show obvious defects during vegetative and reproductive development, suggesting that the gene is an early stage of subfunctionalization or pseudogenization.
Perennial ryegrass (Lolium perenne L.), an important forage grass species in temperate regions, is genetically improved by population breeding. Although valued for their broad genetic base, the resulting synthetic varieties only partially exploit heterosis. Hybrid breeding offers opportunities to fix beneficial heterotic patterns more effectively and, hence, to increase the yield potential. A suspected bottleneck in the production of perennial ryegrass hybrids is the genetic intermixture of existing germplasm, impeding the definition of heterotic groups. In this study, selected parental populations of a diploid and tetraploid cytoplasmic male sterility (CMS)-based hybrid breeding program were characterized using genotyping-by-sequencing (GBS). Hybrid populations, derived from 26 parental combinations of the tetraploid breeding program, were tested for yield performance and compared to synthetic varieties at five sites over four growing seasons. The hybrids significantly outperformed the synthetics by 4.15% on average for total dry matter yield. Additionally, GBS revealed the existence of sub-populations within the tetraploid CMS germplasm. This sub-population structure represents the untapped potential that could be exploited for heterosis to further increase biomass yields. Here, we show that CMS hybrids generate substantial yield gains in perennial ryegrass and provide a method to further improve hybrid breeding, using GBS to select for heterotic groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.