The 2019 novel coronavirus (renamed SARS-CoV-2, and generally referred to as the COVID-19 virus) has spread to 184 countries with over 1.5 million confirmed cases. Such major viral outbreaks demand early elucidation of taxonomic classification and origin of the virus genomic sequence, for strategic planning, containment, and treatment. This paper identifies an intrinsic COVID-19 virus genomic signature and uses it together with a machine learning-based alignment-free approach for an ultra-fast, scalable, and highly accurate classification of whole COVID-19 virus genomes. The proposed method combines supervised machine learning with digital signal processing (MLDSP) for genome analyses, augmented by a decision tree approach to the machine learning component, and a Spearman's rank correlation coefficient analysis for result validation. These tools are used to analyze a large dataset of over 5000 unique viral genomic sequences, totalling 61.8 million bp, including the 29 COVID-19 virus sequences available on January 27, 2020. Our results support a hypothesis of a bat origin and classify the COVID-19 virus as Sarbecovirus, within Betacoronavirus. Our method achieves 100% accurate classification of the COVID-19 virus sequences, and discovers the most relevant relationships among over 5000 viral genomes within a few minutes, ab initio, using raw DNA sequence data alone, and without any specialized biological knowledge, training, gene or genome annotations. This suggests that, for novel viral and pathogen genome sequences, this alignment-free whole-genome machine-learning approach can provide a reliable real-time option for taxonomic classification.
HIGHLIGHTS• TAR-cloned mitochondrial genome of P. tricornutum in yeast • Developed PCR-based cloning method to create designer algal mitochondrial genomes • Stably propagated algal mitochondrial genomes in S. cerevisiae and E. coli hosts . CC-BY-NC-ND 4.
Conjugation is a bacterial mechanism for DNA transfer from a donor cell to a wide range of recipients, including both prokaryotic and eukaryotic cells. In contrast to conventional DNA delivery techniques, such as electroporation and chemical transformation, conjugation eliminates the need for DNA extraction, thereby preventing DNA damage during isolation. While most established conjugation protocols allow for DNA transfer in liquid media or on a solid surface, we developed a procedure for conjugation within solid media. Such a protocol may expand conjugation as a tool for DNA transfer to species that require semi-solid or solid media for growth. Conjugation within solid media could also provide a more stable microenvironment in which the conjugative pilus can establish and maintain contact with recipient cells for the successful delivery of plasmid DNA. Furthermore, transfer in solid media may enhance the ability to transfer plasmids and chromosomes greater than 100 kbp. Using our optimized method, plasmids of varying sizes were tested for transfer from Escherichia coli to Saccharomyces cerevisiae. We demonstrated that there was no significant change in conjugation frequency when plasmid size increased from 56.5 to 138.6 kbp in length. Finally, we established an efficient PCR-based synthesis protocol to generate custom conjugative plasmids.
Yeasts belonging to the Metschnikowia genus are particularly interesting for the unusual formation of only two needle-shaped ascospores during their mating cycle. Presently, the meiotic process that can lead to only two spores from a diploid zygote is poorly understood. The expression of fluorescent nuclear proteins should allow the meiotic process to be visualized in vivo; however, no large-spored species of Metschnikowia has ever been transformed. Accordingly, we aimed to develop a transformation method for Metschnikowia borealis, a particularly large-spored species of Metschnikowia, with the goal of enabling the genetic manipulations required to study biological processes in detail. Genetic analyses confirmed that M. borealis, and many other Metschnikowia species, are CUG-Ser yeasts. Codon-optimized selectable markers lacking CUG codons were used to successfully transform M. borealis by electroporation and lithium acetate, and transformants appeared to be the result of random integration. Mating experiments confirmed that transformed-strains were capable of generating large asci and undergoing recombination. Finally, random integration was used to transform an additional 21 yeast strains, and all attempts successfully generated transformants. The results provide a simple method to transform many yeasts from an array of different clades and can be used to study or develop many species for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.