Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including
Histoplasma
,
Coccidioides
and
Talaromyces
species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.
A hallmark of ulcerative colitis is the chronic colonic inflammation, which is the result of a dysregulated intestinal mucosal immune response. Epithelial barrier disruption which allows the entry of microorganisms eventually leads to more aggressive inflammation and potentially the removal of the colon. We have previously shown that the T helper- (Th-) type 2 cytokines, Interleukin- (IL-) 4 and IL-13, mediate CD4+ T cell- or B cell-driven inflammation in the oxazolone-induced mouse model of ulcerative colitis. In contrast, mice deficient in the shared receptor of IL-4 and IL-13, IL-4 receptor-alpha (IL-4Rα), on all cells develop an exacerbated disease phenotype. This suggests that a regulatory role of IL-4Rα is required to protect against severe colitis. However, the cell populations responsible for regulating the severity of disease onset through IL-4Rα in colitis are yet to be identified. By deleting IL-4Rα on specific cell subsets shown to play a role in mediating colitis, we determined their role in a loss of function approach. Our data demonstrated that the loss of IL-4Rα signalling on intestinal epithelial cells, smooth muscle cells, and macrophages/neutrophils had no effect on alleviating the pathology associated with colitis. These results suggest that IL-4/IL-13 signalling through IL-4Rα on nonhematopoietic intestinal epithelial or smooth muscle cells and hematopoietic macrophage/neutrophils has a redundant role in driving acute oxazolone colitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.