Tuberculosis remains a global health problem, with an estimated 10.4 million cases and 1.8 million deaths resulting from the disease in 2015. The most lethal and disabling form of tuberculosis is tuberculous meningitis (TBM), for which more than 100,000 new cases are estimated to occur per year. In patients who are co-infected with HIV-1, TBM has a mortality approaching 50%. Study of TBM pathogenesis is hampered by a lack of experimental models that recapitulate all the features of the human disease. Diagnosis of TBM is often delayed by the insensitive and lengthy culture technique required for disease confirmation. Antibiotic regimens for TBM are based on those used to treat pulmonary tuberculosis, which probably results in suboptimal drug levels in the cerebrospinal fluid, owing to poor blood-brain barrier penetrance. The role of adjunctive anti-inflammatory, host-directed therapies - including corticosteroids, aspirin and thalidomide - has not been extensively explored. To address this deficit, two expert meetings were held in 2009 and 2015 to share findings and define research priorities. This Review summarizes historical and current research into TBM and identifies important gaps in our knowledge. We will discuss advances in the understanding of inflammation in TBM and its potential modulation; vascular and hypoxia-mediated tissue injury; the role of intensified antibiotic treatment; and the importance of rapid and accurate diagnostics and supportive care in TBM.
The factors that govern the development of tuberculosis disease are incompletely understood. We hypothesized that some strains of Mycobacterium tuberculosis (M. tuberculosis) are more capable of causing disseminated disease than others and may be associated with polymorphisms in host genes responsible for the innate immune response to infection. We compared the host and bacterial genotype in 187 Vietnamese adults with tuberculous meningitis (TBM) and 237 Vietnamese adults with uncomplicated pulmonary tuberculosis. The host genotype of tuberculosis cases was also compared with the genotype of 392 cord blood controls from the same population. Isolates of M. tuberculosis were genotyped by large sequence polymorphisms. The hosts were defined by polymorphisms in genes encoding Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and Toll-like receptor-2 (TLR-2). We found a significant protective association between the Euro-American lineage of M. tuberculosis and pulmonary rather than meningeal tuberculosis (Odds ratio (OR) for causing TBM 0.395, 95% confidence intervals (C.I.) 0.193–0.806, P = 0.009), suggesting these strains are less capable of extra-pulmonary dissemination than others in the study population. We also found that individuals with the C allele of TLR-2 T597C allele were more likely to have tuberculosis caused by the East-Asian/Beijing genotype (OR = 1.57 [95% C.I. 1.15–2.15]) than other individuals. The study provides evidence that M. tuberculosis genotype influences clinical disease phenotype and demonstrates, for the first time, a significant interaction between host and bacterial genotypes and the development of tuberculosis.
To characterize the genetic determinants of resistance to antituberculosis drugs, we performed a genome-wide association study (GWAS) of 6,465 Mycobacterium tuberculosis clinical isolates from more than 30 countries. A GWAS approach within a mixed-regression framework was followed by a phylogenetics-based test for independent mutations. In addition to mutations in established and recently described resistance-associated genes, novel mutations were discovered for resistance to cycloserine, ethionamide and para-aminosalicylic acid. The capacity to detect mutations associated with resistance to ethionamide, pyrazinamide, capreomycin, cycloserine and para-aminosalicylic acid was enhanced by inclusion of insertions and deletions. Odds ratios for mutations within candidate genes were found to reflect levels of resistance. New epistatic relationships between candidate drug-resistance-associated genes were identified. Findings also suggest the involvement of efflux pumps (drrA and Rv2688c) in the emergence of resistance. This study will inform the design of new diagnostic tests and expedite the investigation of resistance and compensatory epistatic mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.