Gene expression evolution through gene regulatory network (GRN) changes has gained appreciation as a driver of morphological evolution. However, understanding how GRNs evolve is hampered by finding relevant cis-regulatory element (CRE) mutations, and interpreting the protein-DNA interactions they alter. We investigated evolutionary changes in the duplicated Bric-à-brac (Bab) transcription factors and a key Bab target gene in a GRN underlying the novel dimorphic pigmentation of D. melanogaster and its relatives. It has remained uncertain how Bab was integrated within the pigmentation GRN. Here, we show that the ancestral transcription factor activity of Bab gained a role in sculpting sex-specific pigmentation through the evolution of binding sites in a CRE of the pigment-promoting yellow gene. This work demonstrates how a new trait can evolve by incorporating existing transcription factors into a GRN through CRE evolution, an evolutionary path likely to predominate newly evolved functions of transcription factors.
Cross-sectional studies suggest that hippocampal volume declines across stages of psychosis. In contrast, longitudinal studies indicate that hippocampal volume is stable in the critical period following illness onset. How can these seemingly disparate sets of findings be resolved? In the present study, we examine two previously unexplored reasons for this discrepancy. First, only specific subregions of the hippocampus may change during the early stage of psychosis. Second, there is diagnostic heterogeneity in the early stage of psychosis and cross-sectional analysis does not permit examination of illness trajectory. Some early stage individuals will have persistent illness leading to a diagnosis of schizophrenia, whereas in others, psychosis will remit. Hippocampal volume may be reduced only in individuals who will ultimately be diagnosed with schizophrenia. We acquired longitudinal structural MRI data from 63 early psychosis and 63 healthy control participants, with up to 4 time points per participant collected over 2 years. Subfield volumes were measured in the anterior and posterior hippocampus using automated segmentation specialized for longitudinal analysis. We observed a volume deficit in early psychosis participants compared to healthy controls that was most pronounced in the anterior hippocampus, but this deficit did not change over 2 years. Importantly, we found that anterior cornu ammonis volume is smaller at baseline in individuals who were diagnosed with schizophrenia at follow-up, but normal in those who maintained a diagnosis of schizophreniform disorder over 2 years. Smaller hippocampal volume is not diagnostic of psychosis, but is instead prognostic of clinical outcome.
Reduced hippocampal volume is a consistent finding in neuroimaging studies of individuals with schizophrenia. While these studies have the advantage of large sample sizes, they are unable to quantify the cellular basis of structural or functional changes. In contrast, postmortem studies are well suited to explore subfield and cellular alterations, but low sample sizes and subject heterogeneity impede establishment of statistically significant differences. Here we use a meta-analytic approach to synthesize the extant literature of hippocampal subfield volume and cellular composition in schizophrenia patients and healthy control subjects. Following pre-registration (PROSPERO CRD42019138280), PubMed, Web of Science, and PsycINFO were searched using the term: (schizophrenia OR schizoaffective) AND (post-mortem OR postmortem) AND hippocampus. Subjects were adult men and women with schizophrenia or schizoaffective disorder or non-psychiatric control subjects, and key outcomes, stratified by hippocampal hemisphere and subfield, were volume, neuron number, neuron density, and neuron size. A random effects meta-analysis was performed. Thirty-two studies were included (413 patients, 415 controls). In patients, volume and neuron number were significantly reduced in multiple hippocampal subfields in left, but not right hippocampus, whereas neuron density was not significantly different in any hippocampal subfield. Neuron size, averaged bilaterally, was also significantly reduced in all calculated subfields. Heterogeneity was minimal to moderate, with rare evidence of publication bias. Meta-regression of age and illness duration did not explain heterogeneity of total hippocampal volume effect sizes. These results extend neuroimaging findings of smaller hippocampal volume in schizophrenia patients and further our understanding of regional and cellular neuropathology in schizophrenia.
Gene expression evolution through gene regulatory network (GRN) changes has gained appreciation as a driver of morphological evolution. However, understanding how GRNs evolve is hampered by finding relevant cis-regulatory element (CRE) mutations, and interpreting the protein-DNA interactions they alter. We investigated evolutionary changes in the duplicated Bric-à-brac (Bab) transcription factors and a key Bab target gene in a GRN underlying the novel dimorphic pigmentation of D. melanogaster and its relatives. It has remained uncertain how Bab was integrated within the pigmentation GRN. Here we show that Bab gained a role in sculpting sex-specific pigmentation through the evolution of binding sites in a CRE of the pigment-promoting yellow gene and without any noteworthy changes to Bab protein coding sequences. This work demonstrates how a new trait can evolve by incorporating existing transcription factors into a GRN through CRE evolution, an evolutionary path likely to predominate newly evolved functions of transcription factors.
Incomplete hippocampal inversion (IHI) is an anatomical variant of the human brain resulting from an arrest in brain development, especially prevalent in the left hemisphere. We hypothesized that IHI is more common in schizophrenia and contributes to the well-known hippocampal structural differences. We studied 199 schizophrenia patients and 161 healthy control participants with 3 T MRI to establish IHI prevalence and the relationship of IHI with hippocampal volume and asymmetry. IHI was more prevalent (left hemisphere: 15% of healthy control participants, 27% of schizophrenia patients; right hemisphere: 4% of healthy control participants, 10% of schizophrenia patients) and more severe in schizophrenia patients compared to healthy control participants. Severe IHI cases were associated with a higher rate of automated segmentation failure. IHI contributed to smaller hippocampal volume and increased R > L volume asymmetry in schizophrenia. The increased prevalence and severity of IHI supports the neurodevelopmental model of schizophrenia. The impact of this developmental variant deserves further exploration in studies of the hippocampus in schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.