This paper considers the problem of comparing several means under the one-way Analysis of Variance (ANOVA) setup. In ANOVA, outliers and heavy-tailed error distribution can seriously hinder the treatment effect, leading to false positive or false negative test results. We propose a robust test of ANOVA using an M-estimator based on the density power divergence. Compared with the existing robust and non-robust approaches, the proposed testing procedure is less affected by data contamination and improves the analysis. The asymptotic properties of the proposed test are derived under some regularity conditions. The finite-sample performance of the proposed test is examined via a series of Monte-Carlo experiments and two empirical data examples—bone marrow transplant dataset and glucose level dataset. The results produced by the proposed testing procedure are favorably compared with the classical ANOVA and robust tests based on Huber’s M-estimator and Tukey’s MM-estimator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.