Introduction: Portable oxygen concentrators (POCs) are medical devices that use physical means to separate oxygen from the atmosphere to produce concentrated, medical-grade gas. Providing oxygen to low-resources environments, such as austere locations, military combat zones, rural Emergency Medical Services (EMS), and during disasters, becomes expensive and logistically intensive. Recent advances in separation technology have promoted the development of POC systems ruggedized for austere use. This review provides a comprehensive summary of the available data regarding POCs in these challenge environments. Methods: PubMed, Google Scholar, and the Defense Technical Information Center were searched from inception to November 2021. Articles addressing the use of POCs in low-resource settings were selected. Three authors were independently involved in the search, review, and synthesis of the articles. Evidence was graded using Oxford Centre for Evidence-Based Medicine guidelines. Results: The initial search identified 349 articles, of which 40 articles were included in the review. A total of 724 study subjects were associated with the included articles. There were no Level I systematic reviews or randomized controlled trials. Discussion: Generally, POCs are a low-cost, light-weight tool that may fill gaps in austere, military, veterinary, EMS, and disaster medicine. They are cost-effective in low-resource areas, such as rural and high-altitude hospitals in developing nations, despite relatively high capital costs associated with initial equipment purchase. Implementation of POC in low-resource locations is limited primarily on access to electricity but can otherwise operate for thousands of hours without maintenance. They provide a unique advantage in combat operations as there is no risk of explosive if oxygen tanks are struck by high-velocity projectiles. Despite their deployment throughout the battlespace, there were no manuscripts identified during the review involving the efficacy of POCs for combat casualties or clinical outcomes in combat. Veterinary medicine and animal studies have provided the most robust data on the physiological effectiveness of POCs. The success of POCs during the coronavirus disease 2019 (COVID-19) pandemic highlights the potential for POCs during future mass-casualty events. There is emerging technology available that combines a larger oxygen concentrator with a compressor system capable of refilling small oxygen cylinders, which could transform the delivery of oxygen in austere environments if ruggedized and miniaturized. Future clinical research is needed to quantify the clinical efficacy of POCs in low-resource settings.
Introduction Critical Care Air Transport Team (CCATT) is a three-person United States Air Force (USAF) medical asset, typically providing intercontinental medical evacuation on large military aircraft. The CCATT equipment Allowance Standard (AS) weighs approximately 272 kg (600 lbs). In austere locations, CCATT teams may augment contract medical evacuation (CME) personnel or Pararescue (PJ) in small aircraft with limited space for medical equipment. It was unknown what deployed PJ and CME carry within their packouts. We sought to design a packout or “Go Bag,” weighing less than 22.7 kg (50 lbs) and sourced from the CCATT AS, that a CCATT member could use to complement CME or PJ equipment to provide a higher level of care while limiting redundancy. Materials and Methods Equipment lists were obtained from a CME and PJs from two separate USAF squadrons. The equipment lists were combined to provide a reference for development of a CCATT Go Bag. Three members of a deployed CCATT team independently generated a list of necessary equipment from the CCATT AS. The list was peer reviewed by a separate, deployed CCATT team. Results A Go Bag was developed with the supplies and equipment necessary for video laryngoscopy, ventilation, invasive pressure monitoring, basic laboratory capability, chest tube placement, ultrasound, and advanced pharmacologic interventions. The Go Bag weighed 18.3 kg (40.4 lbs). A separate respiratory bag weighing 1.1 kg (2.4 lbs) was attached directly to a ventilator. Intravenous pumps and cardiac monitoring equipment were notable ICU equipment excluded from the Go Bag. Conclusion Major components of the CCATT AS can be reduced into a Go Bag and accompanying Ventilator Accessory Bag. This may benefit CCATT teams required to augment PJs or CME in small aircraft during prolonged field care scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.