During infant feeding, the nipple is an important source of sensory information that affects motor outputs, including ones dealing with compression of the nipple, suction, milk bolus movement, and swallowing. Despite known differences in behavior across commercially available nipples, little is known about the in vivo effects of nipple property variation. Here we quantify the effect of differences in nipple stiffness and hole size on an easily measured metric representing infant feeding behavior: nipple compression. We bottle-fed 7-day old infant pigs (n = 6) on four custom fabricated silicone nipples. We recorded live X-ray fluoroscopic imaging data of feeding on nipples of two levels of hardness/stiffness and two hole sizes. We tested for differences in nipple compression at the nipple's maximum compression across different nipple types using a mixed model analysis of variance. Stiffer nipples and those with smaller holes were compressed less than compliant nipples and nipples with larger holes (p < 0.001). We also estimated the force applied on the nipple during feeding and found that more force was applied to the compliant nipple with disproportionately larger strains. Our results suggest that infant pigs' nipple compression depends on material type and hole size, which is likely detected by the infant pigs' initial assessment of compressibility and flow. By isolating nipple properties, we demonstrated a relationship between properties and suckling behavior.Our results suggest that sensory information affects feeding behaviors and may also inform clinical treatment of poor feeding performance.
At the level of the whole muscle, contractile patterns during activity are a critical and necessary source of variation in function. Understanding if a muscle is actively lengthening, shorting, or remaining isometric has implications for how it is working to power a given behavior. When feeding, the muscles associated with the tongue, jaws, pharynx, and hyoid act together to transport food through the oral cavity and into the esophagus. These muscles have highly coordinated firing patterns, yet also exhibit high levels of regional heterogeneity in both their timing of activity and their contractile characteristics when active. These high levels of variation make investigations into function challenging, especially in systems where muscles power multiple behaviors. We used infant pigs as a model system to systematically evaluate variation in muscle firing patterns in two muscles (mylohyoid and genioglossus) during two activities (sucking and swallowing). We also evaluated the contractile characteristics of mylohyoid during activity in the anterior and posterior regions of the muscle. We found that the posterior regions of both muscles had different patterns of activity during sucking versus swallowing, whereas the anterior regions of the muscles did not. Furthermore, the anterior portion of mylohyoid exhibited concentric contractions when active during sucking, whereas the posterior portion was isometric during sucking and swallowing. This difference suggests that the anterior portion of mylohyoid in infant pigs is functioning in concert with the tongue and jaws to generate suction, whereas the posterior portion is likely acting as a hyoid stabilizer during sucking and swallowing. Our results demonstrate the need to evaluate both the contractile characteristics and activity patterns of a muscle in order to understand its function, especially in cases where there is potential for variation in either factor within a single muscle.
Infant feeding is a critical neurological milestone in development defined by the coordination of muscles, peripheral nerves, and brainstem nuclei. In infants, milk flow rate is often limited to improve feeding performance without treating the underlying deficiencies in the sucking and swallowing processes. Modification of the neuromotor response via sensory information from the nipple during bottle feeding is an unexplored avenue for physiology‐based interventions. In this study, we assessed how differences in nipple hole size and nipple stiffness affect sucking muscle activation and subsequent movement. We fabricated four bottle nipples of varying hole size and stiffness to determine how variation in nipple properties affects the sucking behavior of infant pigs. Our results demonstrate that sensory information from the nipple affects sucking motor output. Nipple hole sizes and stiffnesses with a larger milk flow rate resulted in greater muscle activity and kinematic movement. Additionally, our results suggest that sensorimotor interventions are better directed toward modulating tongue function rather than the mandible movements due to a greater response to sensory information. Understanding how sensory information influences infant feeding is instrumental in promoting effective infant feeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.