In the past two decades, Earth observation (EO) data have been utilized for studying the spatial patterns of urban deprivation. Given the scope of many existing studies, it is still unclear how very-high-resolution EO data can help to improve our understanding of the multidimensionality of deprivation within settlements on a city-wide scale. In this work, we assumed that multiple facets of deprivation are reflected by varying morphological structures within deprived urban areas and can be captured by EO information. We set out by staying on the scale of an entire city, while zooming into each of the deprived areas to investigate deprivation through land cover (LC) variations. To test the generalizability of our workflow, we assembled multiple WorldView-3 datasets (multispectral and shortwave infrared) with varying numbers of bands and image features, allowing us to explore computational efficiency, complexity, and scalability while keeping the model architecture consistent. Our workflow was implemented in the city of Nairobi, Kenya, where more than sixty percent of the city population lives in deprived areas. Our results indicate that detailed LC information that characterizes deprivation can be mapped with an accuracy of over seventy percent by only using RGB-based image features. Including the near-infrared (NIR) band appears to bring significant improvements in the accuracy of all classes. Equally important, we were able to categorize deprived areas into varying profiles manifested through LC variability using a gridded mapping approach. The types of deprivation profiles varied significantly both within and between deprived areas. The results could be informative for practical interventions such as land-use planning policies for urban upgrading programs.
Routine and accurate data on deprivation are needed for urban planning and decision support at various scales (i.e., from community to international). However, analyzing information requirements of diverse users on urban deprivation, we found that data are often not available or inaccessible. To bridge this data gap, Earth Observation (EO) data can support access to frequently updated spatial information. However, a user-centered approach is urgently required for the production of EO-based mapping products. Combining an online survey and several forms of user interactions, we defined five system specifications (derived from user requirements) for designing an open-access spatial information system for deprived urban areas. First, gridded maps represent the optimal spatial granularity to deal with high uncertainties of boundaries of deprived areas and to protect privacy. Second, a high temporal granularity of 1–2 years is important to respond to the high spatial dynamics of urban areas. Third, detailed local-scale information should be part of a city-to-global information system. Fourth, both aspects, community assets and risks, need to be part of an information system, and such data need to be combined with local community-based information. Fifth, in particular, civil society and government users should have fair access to data that bridges the digital barriers. A data ecosystem on urban deprivation meeting these requirements will be able to support community-level action for improving living conditions in deprived areas, local science-based policymaking, and tracking progress towards global targets such as the SDGs.
Gridded population datasets model the population at a relatively high spatial and temporal granularity by reallocating official population data from irregular administrative units to regular grids (e.g., 1 km grid cells). Such population data are vital for understanding human–environmental relationships and responding to many socioeconomic and environmental problems. We analyzed one very broadly used gridded population layer (GHS-POP) to assess its capacity to capture the distribution of population counts in several urban areas, spread across the major world regions. This analysis was performed to assess its suitability for global population modelling. We acquired the most detailed local population data available for several cities and compared this with the GHS-POP layer. Results showed diverse error rates and degrees depending on the geographic context. In general, cities in High-Income (HIC) and Upper-Middle-Income Countries (UMIC) had fewer model errors as compared to cities in Low- and Middle-Income Countries (LMIC). On a global average, 75% of all urban spaces were wrongly estimated. Generally, in central mixed or non-residential areas, the population was overestimated, while in high-density residential areas (e.g., informal areas and high-rise areas), the population was underestimated. Moreover, high model uncertainties were found in low-density or sparsely populated outskirts of cities. These geographic patterns of errors should be well understood when using population models as an input for urban growth models, as they introduce geographic biases.
Earth Observation (EO) to produce policy-driven information on slums has been receiving increasing attention amongst experts. However, the geo-ethical concerns associated with making slum information publicly available are commonly neglected among the EO community. This study analysed the geo-ethics in terms of technology, product, and application-level using topicfocused interviews in the Greater Accra Region, Ghana. We identified that potential users have little knowledge of machine learning-based slum mapping methods, which implies the need for technology and product documentation to improve the acceptability and usability of EO data. We observed an application mismatch among institutions. While NGOs and research institutions required data for pro-poor initiatives, most government institutions needed data for slum eradication. Such mismatches require a rethinking of how slum data should be made public. We present a guide to disseminate information to users in support of developing a global slum data repository.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.