This report describes a two-phase synthesis of water-soluble carboxylate-functionalized alkanethiolate-capped Pd nanoparticles from ω-carboxyl-S-alkanethiosulfate sodium salts. The two-phase methodology using the thiosulfate ligand passivation protocol allowed a highly specific control over the surface ligand coverage of these nanoparticles, which are lost in a one-phase aqueous system because of the base-catalyzed hydrolysis of thiosulfate to thiolate. Systematic synthetic variations investigated in this study included the concentration of ω-carboxyl-S-alkanethiosulfate ligand precursors and reducing agent, NaBH4, and the overall ligand chain length. The resulting water-soluble Pd nanoparticles were isolated and characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), 1H NMR, UV–vis, and FT-IR spectroscopy. Among different variations, a decrease in the molar equivalent of NaBH4 resulted in a reduction in the surface ligand density while maintaining a similar particle core size. Additionally, reducing the chain length of the thiosulfate ligand precursor also led to the formation of stable nanoparticles with a lower surface coverage. Since the metal core size of these Pd nanoparticle variations remained quite consistent, direct correlation studies between ligand properties and catalytic activities against hydrogenation/isomerization of allyl alcohol could be performed. Briefly, Pd nanoparticles dissolved in water favored the hydrogenation of allyl alcohol to 1-propanol whereas Pd nanoparticles heterogeneously dispersed in chloroform exhibited a rather high selectivity towards the isomerization product (propanal). The results suggested that the surrounding ligand environments, such as the ligand structure, conformation, and surface coverage, were crucial in determining the overall activity and selectivity of the Pd nanoparticle catalysts.
This article presents the systematic evaluation of colloidal palladium nanoparticles functionalized with well-defined small organic ligands that provide spatial control of the geometric and electronic surface properties of nanoparticle catalysts. Palladium nanoparticles stabilized with thiolate ligands of different structures and functionalities (linear alkyl vs cyclohexyl vs phenyl) are synthesized using the thiosulfate protocol in a two-phase system. The structure and composition of palladium nanoparticles are characterized using transmission electron microscopy, thermogravimetric analysis, NMR, and UV–vis spectroscopies. The catalysis studies show that the chemical and structural compositions of monolayers surrounding the nanoparticle core greatly influence the overall activity and selectivity of colloidal palladium nanoparticle catalysts for the hydrogenation, isomerization, and hydrogenolysis of allylic alcohols. Especially, noncovalent interactions between surface phenyl ligands and incoming aromatic substrates are found to have a profound influence on the selectivity of colloidal palladium nanoparticles.
This article presents the evaluation of water-soluble palladium nanoparticles with hydrophobic active sites that are ideal for the biphasic colloidal catalysis of water-insoluble organic substrates in aqueous solution. Palladium nanoparticles stabilized with ω-carboxylate-functionalized alkanethiolate are first synthesized using ω-carboxylate-S-alkylthiosulfate as their ligand precursor. The biphasic catalysis is carried out for the reaction of hydrophobic allylic alcohols without using any additional mixing solvent or surfactant, which results in the complete consumption of substrates under the atmospheric pressure of H2 gas and at room temperature in less than 24 h. Systematic investigations on the influence of pH and substrate size are also performed to examine the utility of these thiolate-capped palladium nanoparticles as structurally stable and water-soluble micellar catalysts for the biphasic reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.