BackgroundThis study evaluated variations in root canal configuration in the maxillary permanent molars of Taiwanese patients by analyzing patients' cone beam computed tomography (CBCT) images. Comparisons were made among these configurations and those previously reported. This information may serve as a basis for improving the success rate of endodontic treatment.MethodsThe root canal systems of 114 Taiwanese patients with bilateral maxillary first or second molars were examined using CBCT images. The number of roots, canals per root, and additional mesiobuccal (MB) canals, as well as the canal configuration were enumerated and recorded.ResultsOf the 196 maxillary first molars examined, three (1.5%) had a single root, two (1.0%) had two roots, and 191 (97.5%) had three separate roots. Out of all first molar roots examined, 44% of mesiobuccal (MB) roots had a single canal and the remainder had a second MB (MB2) canal. Of the 212 maxillary second molars examined, 16 (7.1%) had a single root, 51 (24.2%) had two roots, 143 (67.8%) had three roots, and two (0.9%) had four separate roots. For the MB roots, 92.3% of three-rooted maxillary second molars had a single canal and the remainder had an MB2 canal. In all three-rooted maxillary first and second molars, each of the distal and palatal roots had one canal.ConclusionsThe root canal configurations of the MB roots of maxillary molars were more varied than those of the distobuccal and palatal roots, and the root canal configurations of maxillary second molars were more varied than those of the first molars. These findings demonstrate CBCT as a useful clinical tool for endodontic diagnosis and treatment planning.
The benefits and feasibility of platform switching have been discussed in several studies, reporting lesser crestal bone loss in platform-switched implants than in platform-matched implants. Objective. The aim of the present study was to observe the changes in vertical and horizontal marginal bone levels in platform-switched and platform-matched dental implants. Materials and Methods. 51 patients received 60 dental implants in the present study over a 1-year period. Measurement was performed between the implant shoulder and the most apical and horizontal marginal defect by periapical radiographs to examine the changes of peri-implant alveolar bone before and 12 months after prosthodontic restoration delivery. Results. These marginal bone measurements showed a bone gain of 0.23 ± 0.58 mm in the vertical gap and 0.22 ± 0.53 mm in the horizontal gap of platform matching, while in platform switching a bone gain of 0.93 ± 1 mm (P < 0.05) in the vertical gap and 0.50 ± 0.56 mm in the horizontal gap was found. The average vertical gap reduction from the baseline until 12 months was 0.92 ± 1.11 mm in platform switching and 0.29 ± 0.85 mm in platform matching (P < 0.05). Conclusions. Within the limitations of the present study, platform switching seemed to be more effective for a better peri-implant alveolar bone vertical and horizontal gap reduction at 1 year.
In this study, the wound healing properties of the gelatin-based hydrogel (GBH) wound dressing combined with adipose-derived stem cells (ADSCs) were investigated using the mouse and porcine models. The analytical results showed that the ADSCs harvested from the porcine significantly increased cell growth and promoted cell differentiation (adipogenesis and osteogenesis) in comparison to the ADSCs harvested from the mouse in vitro. Moreover, the in vivo results also indicated that the GBH wound dressing combined with ADSCs and its culture medium could potentially accelerate wound healing in the mouse and porcine models. The ADSCs presented a possibility of recovery from wounds and injuries through skin regeneration. Therefore, both in vitro and in vivo results demonstrated that the ADSCs can potentially be an effective clinical treatment through the GBH wound dressing, which is a promising evidence-based complementary and alternative medicine for skin regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.