Curcumin is a potential natural remedy for preventing Helicobacter pylori-associated gastric inflammation and cancer. Here, we analyzed the effect of a phospholipid formulation of curcumin on H. pylori growth, translocation and phosphorylation of the virulence factor CagA and host protein kinase Src in vitro and in an in vivo mouse model of H. pylori infection. Growth of H. pylori was inhibited dose-dependently by curcumin in vitro. H. pylori was unable to metabolically reduce curcumin, whereas two enterobacteria, E. coli and Citrobacter rodentium, which efficiently reduced curcumin to the tetra- and hexahydro metabolites, evaded growth inhibition. Oxidative metabolism of curcumin was required for the growth inhibition of H. pylori and the translocation and phosphorylation of CagA and cSrc, since acetal- and diacetal-curcumin that do not undergo oxidative transformation were ineffective. Curcumin attenuated mRNA expression of the H. pylori virulence genes cagE and cagF in a dose-dependent manner and inhibited translocation and phosphorylation of CagA in gastric epithelial cells. H. pylori strains isolated from dietary curcumin-treated mice showed attenuated ability to induce cSrc phosphorylation and the mRNA expression of the gene encoding for IL-8, suggesting long-lasting effects of curcumin on the virulence of H. pylori. Our work provides mechanistic evidence that encourages testing of curcumin as a dietary approach to inhibit the virulence of CagA.
The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is related with the COVID-19 pandemic. Recent spike protein variations have had an effect on the transmission of the virus. In addition to ACE-2, spike proteins can employ DC-SIGN and its analogous receptor, DC-SIGNR, for host evasion. Spike variations in the DC-SIGN interaction region and role of DC-SIGN in immune evasion have not been well defined. To understand the spike protein variations and their binding mode, phylogenetic analysis of the complete GISAID (Global Initiative for Sharing Avian Influenza Data) data of the SARS-CoV-2 spike protein was considered. In addition, an in silico knockout network evaluation of the SARS-CoV-2 single-cell transcriptome was conducted to determine the key role of DC-SIGN/R in immunological dysregulation. Within the DC-SIGN-interacting region of the SARS-CoV spike protein, the spike protein of SARS-CoV-2 displayed remarkable similarity to the SARS-CoV spike protein. Surprisingly, the phylogenetic analysis revealed that the SARS-CoV-2’s spike exhibited significantly diverse variants in the DC-SIGN interaction domain, which altered the frequency of these variants. The variation within the DC-SIGN-interacting domain of spike proteins affected the binding of a limited number of variants with DC-SIGN and DC-SIGNR and affected their evolution. MMGBSA binding free energies evaluation differed for variants from those of the wild type, suggesting the influence of substitution mutations on the interaction pattern. In silico knockout network analysis of the single-cell transcriptome of Bronchoalveolar Lavage and peripheral blood mononuclear cells revealed that SARS-CoV-2 altered DC-SIGN/R signaling. Early surveillance of diverse SARS-CoV-2 strains could preclude a worsening of the pandemic and facilitate the development of an optimum vaccine against variations. The spike Receptor Binding Domain genetic variants are thought to boost SARS CoV-2 immune evasion, resulting in its higher longevity. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00820-3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.