Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found that each tumor type has a distinct microbiome composition and that breast cancer has a particularly rich and diverse microbiome. The intratumor bacteria are mostly intracellular and are present in both cancer and immune cells. We also noted correlations between intratumor bacteria or their predicted functions with tumor types and subtypes, patients’ smoking status, and the response to immunotherapy.
Individual cells from a genetically identical population exhibit substantial variation in gene expression. A significant part of this variation is due to noise in the process of transcription that is intrinsic to each gene, and is determined by factors such as the rate with which the promoter transitions between transcriptionally active and inactive states, and the number of transcripts produced during the active state. However, we have a limited understanding of how the DNA sequence affects such promoter dynamics. Here, we used single-cell time-lapse microscopy to compare the effect on transcriptional dynamics of two distinct types of sequence changes in the promoter that can each increase the mean expression of a cell population by similar amounts but through different mechanisms. We show that increasing expression by strengthening a transcription factor binding site results in slower promoter dynamics and higher noise as compared with increasing expression by adding nucleosome-disfavoring sequences. Our results suggest that when achieving the same mean expression, the strategy of using stronger binding sites results in a larger number of transcripts produced from the active state, whereas the strategy of adding nucleosome-disfavoring sequences results in a higher frequency of promoter transitions between active and inactive states. In the latter strategy, this increased sampling of the active state likely reduces the expression variability of the cell population. Our study thus demonstrates the effect of cis-regulatory elements on expression variability and points to concrete types of sequence changes that may allow partial decoupling of expression level and noise.
Metastatic spread to regional lymph nodes is one of the earliest events of tumor cell dissemination and presents a most significant prognostic factor for predicting survival of cancer patients. Real-time in vivo imaging of the spread of tumor cells through the lymphatic system can enhance our understanding of the metastatic process. Herein, we describe the use of in vivo fluorescence microscopy imaging to monitor the progression of lymph node metastasis as well as the course of spontaneous metastasis through the lymphatic system of orthotopic MDA-MB-231 human breast cancer tumors in severe combined immunodeficient mice. High-resolution noninvasive visualization of metastasizing cancer cells in the inguinal lymph nodes was achieved using cells expressing high levels of red fluorescent protein. Sequential imaging of these lymph nodes revealed the initial invasion of the tumor cells through the lymphatic system into the subcapsular sinuses followed by intrusion into the parenchyma of the nodes. FITCdextran injected i.d. in the tumor area enabled simultaneous tracking of lymphatic vessels, labeled in green, and disseminated red cancer cells within these vessels. Fast snapshots of spontaneously metastasizing cells in the lymphatic vessels monitored the movement of a few tumor cells and the development of clumps clustered at lymphatic vessel junctions. Quantification of high interstitial fluid pressure (IFP) in the tumors and fast drainage rates of the FITC-dextran into the peritumoral lymphatic vessels suggested an IFP-induced intravasation into the lymphatic system. This work presents unprecedented live fluorescence images that may help to clarify the steps occurring in the course of spontaneous lymphogenic metastasis. (Cancer Res 2006; 66(16): 8037-41)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.