Multi cloud computing has become a new trend for complementing existing cloud computing today. Multi cloud computing is considered safer and more efficient in maintaining data regulation of user(s). The paper discusses the security of mobile multi cloud computing (MMC) and the advantages for mobile user(s), beside that for the data security itself cover with homomorphic encryption which predictable by many researchers as the optimum method for cloud computing environment. The implementation and evaluation of homomorphic encryption in mobile cloud computing are discussed in this paper.
There are many malware applications in Smartphone. Smartphone's users may become unaware if their data has been recorded and stolen by intruders via malware. Smartphone—whether for business or personal use—may not be protected from malwares. Thus, monitoring, detecting, tracking, and notification (MDTN) have become the main purpose of the writing of this paper. MDTN is meant to enable Smartphone to prevent and reduce the number of cybercrimes. The methods are shown to be effective in protecting Smartphone and isolating malware and sending warning in the form of notification to the user about the danger in progress. In particular, (a) MDTN process is possible and will be enabled for Smartphone environment. (b) The methods are shown to be an advanced security for private sensitive data of the Smartphone user.
Classifier ensembles have been utilized in the industrial cybersecurity sector for many years. However, their efficacy and reliability for intrusion detection systems remain questionable in current research, owing to the particularly imbalanced data issue. The purpose of this article is to address a gap in the literature by illustrating the benefits of ensemble-based models for identifying threats and attacks in a cyber-physical power grid. We provide a framework that compares nine cost-sensitive individual and ensemble models designed specifically for handling imbalanced data, including cost-sensitive C4.5, roughly balanced bagging, random oversampling bagging, random undersampling bagging, synthetic minority oversampling bagging, random undersampling boosting, synthetic minority oversampling boosting, AdaC2, and EasyEnsemble. Each ensemble’s performance is tested against a range of benchmarked power system datasets utilizing balanced accuracy, Kappa statistics, and AUC metrics. Our findings demonstrate that EasyEnsemble outperformed significantly in comparison to its rivals across the board. Furthermore, undersampling and oversampling strategies were effective in a boosting-based ensemble but not in a bagging-based ensemble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.