Purpose This study aims to examine the effect of the size of the intraoral scanning area on implant position reproducibility and compare the implant position reproducibility of plaster models fabricated using the silicone impression technique, the digital model of an intraoral scanner, and three-dimensional (3D)-printed models fabricated using an intraoral scanner. Methods Scanbodies were attached to an edentulous model with six implants (master model) and were scanned using a dental laboratory scanner to obtain basic data. The plaster model was fabricated using the open-tray method (IMPM; n = 5). The master model was then scanned in various implant areas using an intraoral scanner to obtain data (IOSM; n = 5); the scanning data of six scanbodies were used to fabricate the 3D-printed models (3DPM; n = 5) using a 3D printer. Scanbodies were attached to the implant analogs of the IMPM and 3DPM models and data were obtained using a dental laboratory scanner. The basic data and IMPM, IOSM, and 3DPM data were superimposed to calculate the concordance rate of the scanbodies. Results The concordance rate of intraoral scanning decreased as the number of scanbodies increased. Significant differences were observed between the IMPM and IOSM data, and between the IOSM and 3DPM data; however, the IMPM and 3DPM data did not differ significantly. Conclusions The implant position reproducibility of the intraoral scanner decreased with an increase in the scanning area. However, ISOM and 3DPM may provide higher implant position reproducibility than plaster models fabricated using IMPM.
Background For biomechanical consideration of dental implants, an understanding of the three-dimensional (3D) load exerted on the implant is essential, but little information is available on the in vivo load, including the measuring devices. Purpose This review aimed to evaluate studies that used specific load-measuring devices that could be mounted on an implant to measure the functional load in vivo. Materials and methods An electronic search utilizing the internet research databases PubMed, Google Scholar, and Scopus was performed. The articles were chosen by two authors based on the inclusion and exclusion criteria. Results In all, 132 studies were selected from the database search, and 16 were selected from a manual search. Twenty-three studies were finally included in this review after a complete full-text evaluation. Eleven studies were related to the force measurements using the strain gauges, and 12 were related to the piezoelectric force transducer. The principles of the two types of devices were completely different, but the devices produced comparable outcomes. The dynamics of the load magnitude and direction on the implant during function were clarified, although the number of participants in each study was small. Conclusions The load exerted on the implant during function was precisely measured in vivo using specific measuring devices, such as strain gauges or piezoelectric force transducers. The in vivo load data enable us to determine the actual biomechanical status in more detail, which might be useful for optimization of the implant prosthetic design and development of related materials. Due to the limited data and difficulty of in vivo measurements, the development of a new, simpler force measurement device and method might be necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.