Nonsymmetrical organic molecules adsorbed on solid surfaces may assemble into random networks, thereby providing model systems for organic glasses that can be directly observed by scanning tunneling microscopy (STM). We investigated the structure of a disordered cytosine network on a gold(111) surface created by thermal quenching, to temperatures below 150 K, of the two-dimensional fluid present on the surface at room temperature. Comparison of STM images to density functional theory calculations allowed us to identify three elementary structural motifs (zigzag filaments and five- and six-membered rings) that underlie the whole supramolecular random network. The identification of elementary structural motifs may provide a new framework for understanding medium-range order in amorphous and glassy systems.
Two molecular phases of the DNA base adenine (A) on a Au(111) surface are observed by using STM under ultrahigh-vacuum conditions. One of these phases is reported for the first time. A systematic approach that considers all possible gas-phase two-dimensional arrangements of A molecules connected by double hydrogen bonds with each other and subsequent ab initio DFT calculations are used to characterize and identify the two phases. The influence of the gold surface on the structure of A assemblies is also discussed. DFT is found to predict a smooth corrugation potential of the gold surface that will enable A molecules to move freely across the surface at room temperature. This conclusion remains unchanged if van der Waals interaction between A and gold is also approximately taken into account. DFT calculations of the A pairs on the Au(111) surface show its negligible effect on the hydrogen bonding between the molecules. These results justify the gas-phase analysis of possible assemblies on flat metal surfaces. Nevertheless, the fact that it is not the most stable gas-phase monolayer that is actually observed on the gold surface indicates that the surface still plays a subtle role, which needs to be properly addressed.
Using ultrahigh vacuum scanning tunneling microscopy ͑STM͒ and ab initio density functional theory, we have investigated in detail structures formed by cytosine on the Au͑111͒ surface in clean ultrahigh vacuum conditions. In spite of the fact that the ground state of this DNA base on the surface is shown to be an ordered arrangement of cytosine one-dimensional branches ͑filaments͒, this structure has never been observed in our STM experiments. Instead, disordered structures are observed, which can be explained by only a few elementary structural motifs: filaments, five-and sixfold rings, which randomly interconnect with each other forming bent chains, T junctions, and nanocages. The latter may have trapped smaller structures inside. The formation of such an unusual assembly is explained by simple kinetic arguments as a liquid-glass transition.
Surface Watson–Crick base pairing makes binary mixtures of the complementary nucleobases guanine (G) and cytosine (C) on Au(111) thermally stable up to the desorption temperature of the bases, whereas binary mixtures of the noncomplementary adenine (A) and cytosine segregate on heating (see STM images with DFT structures).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.