Understanding speech in background noise is challenging. Wearing face-masks, imposed by the COVID19-pandemics, makes it even harder. We developed a multi-sensory setup, including a sensory substitution device (SSD) that can deliver speech simultaneously through audition and as vibrations on the fingertips. The vibrations correspond to low frequencies extracted from the speech input. We trained two groups of non-native English speakers in understanding distorted speech in noise. After a short session (30–45 min) of repeating sentences, with or without concurrent matching vibrations, we showed comparable mean group improvement of 14–16 dB in Speech Reception Threshold (SRT) in two test conditions, i.e., when the participants were asked to repeat sentences only from hearing and also when matching vibrations on fingertips were present. This is a very strong effect, if one considers that a 10 dB difference corresponds to doubling of the perceived loudness. The number of sentence repetitions needed for both types of training to complete the task was comparable. Meanwhile, the mean group SNR for the audio-tactile training (14.7 ± 8.7) was significantly lower (harder) than for the auditory training (23.9 ± 11.8), which indicates a potential facilitating effect of the added vibrations. In addition, both before and after training most of the participants (70–80%) showed better performance (by mean 4–6 dB) in speech-in-noise understanding when the audio sentences were accompanied with matching vibrations. This is the same magnitude of multisensory benefit that we reported, with no training at all, in our previous study using the same experimental procedures. After training, performance in this test condition was also best in both groups (SRT ~ 2 dB). The least significant effect of both training types was found in the third test condition, i.e. when participants were repeating sentences accompanied with non-matching tactile vibrations and the performance in this condition was also poorest after training. The results indicate that both types of training may remove some level of difficulty in sound perception, which might enable a more proper use of speech inputs delivered via vibrotactile stimulation. We discuss the implications of these novel findings with respect to basic science. In particular, we show that even in adulthood, i.e. long after the classical “critical periods” of development have passed, a new pairing between a certain computation (here, speech processing) and an atypical sensory modality (here, touch) can be established and trained, and that this process can be rapid and intuitive. We further present possible applications of our training program and the SSD for auditory rehabilitation in patients with hearing (and sight) deficits, as well as healthy individuals in suboptimal acoustic situations.
This study investigated the universality of emotional prosody in perception of discrete emotions when semantics is not available. In two experiments the perception of emotional prosody in Hebrew and German by listeners who speak one of the languages but not the other was investigated. Having a parallel tool in both languages allowed to conduct controlled comparisons. In Experiment 1, 39 native German speakers with no knowledge of Hebrew and 80 native Israeli speakers rated Hebrew sentences spoken with four different emotional prosodies (anger, fear, happiness, sadness) or neutral. The Hebrew version of the Test for Rating of Emotions in Speech (T-RES) was used for this purpose. Ratings indicated participants’ agreement on how much the sentence conveyed each of four discrete emotions (anger, fear, happiness and sadness). In Experient 2, 30 native speakers of German, and 24 Israeli native speakers of Hebrew who had no knowledge of German rated sentences of the German version of the T-RES. Based only on the prosody, German-speaking participants were able to accurately identify the emotions in the Hebrew sentences and Hebrew-speaking participants were able to identify the emotions in the German sentences. In both experiments ratings between the groups were similar. These findings show that individuals are able to identify emotions in a foreign language even if they do not have access to semantics. This ability goes beyond identification of target emotion; similarities between languages exist even for “wrong” perception. This adds to accumulating evidence in the literature on the universality of emotional prosody.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.