Marine oil snow (MOS) formation is a mechanism to transport oil from the ocean surface to sediments. We describe here the use of 110L mesocosms designed to mimic oceanic parameters during an oil spill including the use of chemical dispersants in order to understand the processes controlling MOS formation. These experiments were not designed to be toxicity tests but rather to illustrate mechanisms. This paper focuses on the development of protocols needed to conduct experiments under environmentally relevant conditions to examine marine snow and MOS. The experiments required the production of over 500 liters of water accommodated fraction (WAF), chemically enhanced water accommodated fraction of oil (CEWAF) as well as diluted CEWAF (DCEWAF). A redesigned baffled (170 L) recirculating tank (BRT) system was used. Two mesocosm experiments (M1 and M2) were run for several days each. In both M1 and M2, marine snow and MOS was formed in controls and all treatments respectively. Estimated oil equivalent (EOE) concentrations of CEWAF were in the high range of concentrations reported during spills and field tests, while WAF and DCEWAF concentrations were within the range of concentrations reported during oil spills. EOE decreased rapidly within days in agreement with historic data and experiments.
Sources of exposure to per-and polyfluorinated alkyl substances (PFAS) include food, water, and, given that humans spend typically 90% of their time indoors, air and dust. Quantifying PFAS that are prevalent indoors, such as neutral, volatile PFAS, and estimating their exposure risk to humans are thus important. To accurately measure these compounds indoors, polyethylene (PE) sheets were employed and validated as passive detection tools and analyzed by gas chromatography−mass spectrometry. Air concentrations were compared to dust and carpet concentrations reported elsewhere. Partitioning between PE sheets of different thicknesses suggested that interactions of the PEs with the compounds are occurring by absorption. Volatile PFAS, specifically fluorotelomer alcohols (FTOHs), were ubiquitous in indoor environments. For example, in carpeted Californian kindergarten classrooms, 6:2 FTOH dominated with concentrations ranging from 9 to 600 ng m −3 , followed by 8:2 FTOH. Concentrations of volatile PFAS from air, carpet, and dust were closely related to each other, indicating that carpets and dust are major sources of FTOHs in air. Nonetheless, air posed the largest exposure risk of FTOHs and biotransformed perfluorinated alkyl acids (PFAA) in young children. This research highlights inhalation of indoor air as an important exposure pathway and the need for further reduction of precursors to PFAA.
Marine oil spills can impact both coastal and offshore marine environments, but little information is available on how the microbial response to oil and dispersants might differ between these biomes. Here, we describe the compositional and functional response of microbial communities to different concentrations of oil and chemically dispersed oil in coastal and offshore surface waters from the Texas-Louisiana continental shelf. Using a combination of analytical chemistry and 16S rRNA amplicon and metatranscriptomic sequencing, we provide a broad, comparative overview of the ecological response of hydrocarbon-degrading bacteria and their expression of hydrocarbon-degrading genes in marine surface waters over time between two oceanic biomes. We found evidence for the existence of different ecotypes of several commonly described hydrocarbon-degrading bacterial taxa which behaved differentially in coastal and offshore shelf waters despite being exposed to similar concentrations of oil, dispersants, and nutrients. This resulted in the differential expression of catabolic pathways for n-alkanes and polycyclic aromatic hydrocarbons (PAHs)—the two major categories of compounds found in crude oil—with preferential expression of n-alkane degradation genes in coastal waters while offshore microbial communities trended more toward the expression of PAH degradation genes. This was unexpected as it contrasts with the generally held view that n-alkanes, being more labile, are attacked before the more refractory PAHs. Collectively, our results provide new insights into the existence and potential consequences of niche partitioning of hydrocarbon-degrading taxa between neighboring marine environments. IMPORTANCE In the wake of the Deepwater Horizon oil spill, the taxonomic response of marine microbial communities to oil and dispersants has been extensively studied. However, relatively few studies on the functional response of these microbial communities have been reported, especially in a longitudinal fashion. Moreover, despite the fact that marine oil spills typically impact thousands of square kilometers of both coastal and offshore marine environments, little information is available on how the microbial response to oil and dispersants might differ between these biomes. The results of this study help fill this critical knowledge gap and provide valuable insight into how oil spill response efforts, such as chemically dispersing oil, may have differing effects in neighboring coastal and offshore marine environments.
Polycyclic aromatic hydrocarbons (PAHs) are continuously released from multiple sources and are prone to long‐range transport. Little is known regarding their presence, transport and fate in remote and deep oceans. Polyethylene passive samplers were hence deployed at deep moorings and surface seawater in the Fram Strait and Canadian Archipelago, as well as in air and surface water of the lower Great Lakes, a potential high‐emission region, to understand the transport of PAHs to the Arctic. Dissolved PAHs showed significantly higher concentrations in the lower Great Lakes than those in the high Arctic. Concentrations of dissolved PAHs (Σ19PAHs) ranged from 33 to 300 pg/L in the Fram Strait; the vertical profiles generally exhibited a decreasing trend toward deep waters, which was potentially influenced by hydrological and biogeochemical processes. PAHs were exported from the Arctic Ocean to the North Atlantic through the Fram Strait and the Davis Strait.
Bangladesh hosts extensive textile manufacturing, for some of which per‐ and polyfluorinated alkyl substances (PFAS) have been used to impart water and dirt repellency, among other things. Textile waste emissions to the atmosphere and discharge into rivers and other bodies of water could present a significant concern for human and ecosystem health, but there is little information on PFAS in Bangladesh. To assess the presence of ionic PFAS and their precursors in air and water from Dhaka, Bangladesh, polyethylene sheets were deployed for 28 days as passive samplers for neutral PFAS in outdoor air and water, while ionic PFAS were measured from discrete water grabs. Fluorotelomer alcohols (FTOHs) were detected at almost all sites in air and water; the most frequently detected compound was 6:2 FTOH, ranging from below instrumental detection limits (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.