z www.nature.com/scientificreports/ zero. As no significance test is performed, no correction for multiple comparisons is required. Additionally, no effect size threshold is necessary to apply in the Bayesian approach 75. In the present study, a voxelwise analysis for pairs and groups of contrasts was performed using a zero effect size threshold (same as applied in the paper by Volz et al. (2015)) and a PPM threshold defined as log-odds threshold > 3. Xjview Toolbox (https ://www.alive learn .net/xjvie w/) was used to identify the anatomical location. Clusters lying within the TOM system were distinguished and labelled according to thresholded maps of seven TOM regions: the rTPJ and lTPJ, the precuneus, the dorsal, middle and ventral components of the medial prefrontal cortex, and the right STS 45 (downloaded at https ://saxel ab.mit.edu/use-our-theor y-mind-group-maps).
Social interactions are a crucial aspect of human behaviour. Numerous neurophysiological studies have focused on socio-cognitive processes associated with the so-called theory of mind—the ability to attribute mental states to oneself and others. Theory of mind is closely related to social intelligence defined as a set of abilities that facilitate effective social interactions. Social intelligence encompasses multiple theory of mind components and can be measured by the Four Factor Test of Social Intelligence (the Guilford-Sullivan test). However, it is unclear whether the differences in social intelligence are reflected in structural brain differences. During the experiment, 48 healthy right-handed individuals completed the Guilford-Sullivan test. T1-weighted structural MRI images were obtained for all participants. Voxel-based morphometry analysis was performed to reveal grey matter volume differences between the two groups (24 subjects in each)—with high social intelligence scores and with low social intelligence scores, respectively. Participants with high social intelligence scores had larger grey matter volumes of the bilateral caudate. The obtained results suggest the caudate nucleus involvement in the neural system of socio-cognitive processes, reflected by its structural characteristics.
The organization of socio-cognitive processes is a multifaceted problem for which many sophisticated concepts have been proposed. One of these concepts is social intelligence (SI), i.e., the set of abilities that allow successful interaction with other people. The theory of mind (ToM) human brain network is a good candidate for the neural substrate underlying SI since it is involved in inferring the mental states of others and ourselves and predicting or explaining others’ actions. However, the relationship of ToM to SI remains poorly explored. Our recent research revealed an association between the gray matter volume of the caudate nucleus and the degree of SI as measured by the Guilford-Sullivan test. It led us to question whether this structural peculiarity is reflected in changes to the integration of the caudate with other areas of the brain associated with socio-cognitive processes, including the ToM system. We conducted seed-based functional connectivity (FC) analysis of resting-state fMRI data for 42 subjects with the caudate as a region of interest. We found that the scores of the Guilford-Sullivan test were positively correlated with the FC between seeds in the right caudate head and two clusters located within the right superior temporal gyrus and bilateral precuneus. Both regions are known to be nodes of the ToM network. Thus, the current study demonstrates that the SI level is associated with the degree of functional integration between the ToM network and the caudate nuclei.
An anonymous interaction might facilitate provoking behavior and modify the engagement of theory of mind (TOM) brain mechanisms. However, the effect of anonymity when processing unfair behavior of an opponent remains largely unknown. The current functional magnetic resonance imaging (fMRI) study applied the Taylor aggression paradigm, introducing an anonymous opponent to this task. Thirty-nine healthy right-handed subjects were included in the statistical analysis (13 males/26 females, mean age 24.5 ± 3.6 years). A player winning the reaction-time game could subtract money from the opponent during the task. Participants behaved similarly to both introduced and anonymous opponents. However, when an anonymous opponent (when compared to the introduced opponent) subtracted money, the right inferior frontal gyrus (IFG) demonstrated an increased BOLD signal and increased functional connectivity with the left IFG. Further, increased functional connectivity between the right IFG, the right temporal parietal junction and precuneus was observed during the perception of high provocation (subtracting a large amount of money) from the anonymous compared to the introduced opponent. We speculate that the neural changes may underlie different inferences about the opponents’ mental states. The idea that this reorganization of the TOM network reflects the attempt to understand the opponent by “completing” socially relevant details requires further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.