No abstract
This paper presents VTN, a transformer-based framework for video recognition. Inspired by recent developments in vision transformers, we ditch the standard approach in video action recognition that relies on 3D ConvNets and introduce a method that classifies actions by attending to the entire video sequence information. Our approach is generic and builds on top of any given 2D spatial network. In terms of wall runtime, it trains 16.1× faster and runs 5.1× faster during inference while maintaining competitive accuracy compared to other state-of-the-art methods. It enables whole video analysis, via a single end-to-end pass, while requiring 1.5× fewer GFLOPs. We report competitive results on Kinetics-400 and present an ablation study of VTN properties and the trade-off between accuracy and inference speed. We hope our approach will serve as a new baseline and start a fresh line of research in the video recognition domain. Code and models will be available soon.
AI is becoming ubiquitous, revolutionizing many aspects of our lives. In surgery, it is still a promise. AI has the potential to improve surgeon performance and impact patient care, from post-operative debrief to real-time decision support. But, how much data is needed by an AI-based system to learn surgical context with high fidelity? To answer this question, we leveraged a large-scale, diverse, cholecystectomy video dataset. We assessed surgical workflow recognition and report a deep learning system, that not only detects surgical phases, but does so with high accuracy and is able to generalize to new settings and unseen medical centers. Our findings provide a solid foundation for translating AI applications from research to practice, ushering in a new era of surgical intelligence.
Consider a structured dataset of features, such as {SEX, INCOME, RACE, EXPERIENCE}. A user may want to know where in the feature space observations are concentrated, and where it is sparse or empty. The existence of large sparse or empty regions can provide domain knowledge of soft or hard feature constraints (e.g., what is the typical income range, or that it may be unlikely to have a high income with few years of work experience). Also, these can suggest to the user that machine learning (ML) model predictions for data inputs in sparse or empty regions may be unreliable.An interpretable region is a hyper-rectangle, such as {RACE ∈ {Black, White}} & {10 ≤ EXPERIENCE ≤ 13}, containing all observations satisfying the constraints; typically, such regions are defined by a small number of features. Our method constructs an observation density-based partition of the observed feature space in the dataset into such regions. It has a number of advantages over others in that it works on features of mixed type (numeric or categorical) in the original domain, and can separate out empty regions as well.As can be seen from visualizations, the resulting partitions accord with spatial groupings that a human eye might identify; the results should thus extend to higher dimensions. We also show some applications of the partition to other data analysis tasks, such as inferring about ML model error, measuring high-dimensional density variability, and causal inference for treatment effect. Many of these applications are made possible by the hyper-rectangular form of the partition regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.