4-Substituted-ureido benzenesulfonamides showing inhibitory activity against carbonic anhydrase (CA, EC 4.2.1.1) II between 3.3-226 nM were crystallized in complex with the enzyme. Hydrophobic interactions between the scaffold of the inhibitors in different hydrophobic pockets of the enzyme were observed, explaining the diverse inhibitory range of these derivatives.
A series of dithiocarbamates was prepared by reaction of primary/secondary amines with carbon disulfide in the presence of bases. These compounds were tested for the inhibition of 4 human (h) isoforms of the zinc enzyme carbonic anhydrase, CA (EC 4.2.1.1), hCA I, II, IX and XII, involved in pathologies such as glaucoma (CA II and XII) or cancer (CA IX). Several low nanomolar inhibitors targeting these CAs were detected. X-ray crystal structure of hCA II adduct with morpholine dithiocarbamate evidenced the inhibition mechanism of these compounds, which coordinate to the metal ion through a sulfur atom from the dithiocarbamate zinc-binding function. Some dithiocarbamates showed effective intraocular pressure lowering activity in an animal model of glucoma.
Carbonic anhydrases (CAs, EC 4.2.1.1) are a family of metalloenzymes that catalyze the reversible interconversion of CO(2) and HCO(3)(-). Of the 15 isoforms of human (h) α-CA, 12 are catalytic (hCAs I-IV, VA, VB, VI, VII, IX, XII-XIV). The remaining three acatalytic isoforms (hCAs VIII, X and XI) lack the active site Zn(2+) and are referred to as CA-related proteins (CA-RPs); however, their function remains elusive. Overall these isoforms are very similar to each other in structure but they differ in their expression and distribution. The favourable properties of hCA II such as fast kinetics, easy expression and purification, high solubility and intermediate heat resistance have made it an attractive candidate for numerous industrial applications. This review highlights the structural similarity and stability comparison among hCAs.
Carbonic anhydrases (CAs, EC 4.2.1.1) are a group of metalloenzymes that play important roles in carbon metabolism, pH regulation, CO2 fixation in plants, ion transport etc., and are found in all eukaryotic and many microbial organisms. This family of enzymes catalyzes the interconversion of CO2 and HCO3−. There are at least 16 different CA isoforms in the alpha structural class (α-CAs) that have been isolated in higher vertebrates, with CA isoform II (CA II) being ubiquitously abundant in all human cell types. CA inhibition has been exploited clinically for decades for various classes of diuretics and anti-glaucoma treatment. The characterization of the overexpression of CA isoform IX (CA IX) in certain tumors has raised interest in CA IX as a diagnostic marker and drug target for aggressive cancers and therefore the development of CA IX specific inhibitors. An important goal in the field of CA is to identify, rationalize, and design potential compounds that will preferentially inhibit CA IX over all other isoforms of CA. The variations in the active sites between isoforms of CA are subtle and this causes non-specific CA inhibition which leads to various side effects. In the case of CA IX inhibition, CA II along with other isoforms of CA provide off-target binding sites which is undesirable for cancer treatment. The focus of this article is on CA IX inhibition and two different structural approaches to CA isoform specific drug designing: tail approach and fragment addition approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.