The interest in perovskite nanocrystals (NCs) such as CsPbBr 3 for quantum applications is rapidly raising, as it has been demonstrated that they can behave as very efficient single photon emitters. The main problem to tackle in this context is their photostability under optical excitation. In this article, we present a full analysis of the optical and quantum properties of highly efficient perovskite nanocubes synthesized with an established method, which is used for the first time to produce quantum emitters and is shown to ensure increased photostability. These emitters exhibit reduced blinking together with a strong photon antibunching. Remarkably these features are hardly affected by the increase of the excitation intensity well above the emission saturation levels. Finally, we achieve for the first time the coupling of a single perovskite nanocube with a tapered optical nanofiber in order to aim for a compact integrated single photon source for future applications.
HgTe nanocrystals are currently the most promising colloidal material for infrared detection, combining broadly tunable infrared absorption and photoconductive properties. Current synthesis leads to a limited amount of material and relies on a highly toxic water-soluble form of Hg. Here, we explore the possibility of using Hg thiolate as Hg source and demonstrate that the latter can be formed in situ from liquid Hg. The developed protocol allows large masses (7 g) and highly concentrated (100 g/L) synthesis, which is a step forward for the transfer of this material towards industry. The transport properties of the material have also been investigated and we observe a transition from p to n-type with size. We observe that the threshold of the p to n switch depends on the growth method which enables for a given size of nanocrystal the formation of p-n junction. This work has great potential to design infrared sensor with optimized charge dissociation.
To date defect-tolerance electronic structure of Lead halide perovskite nanocrystals is limited to optical feature in the visible range. Here, we demonstrate that IR sensitization of formamidinium lead iodine (FAPI) nanocrystals array can be obtained by its doping with PbS nanocrystals. In this hybrid array, absorption comes from the PbS nanocrystals while transport is driven by the perovskite which reduces the dark current compared to pristine PbS. In addition, we fabricate a field-effect transistor using a high capacitance ionic glass made of hybrid FAPI/PbS nanocrystal arrays. We show that the hybrid material has an n-type nature with an electron mobility of 2 x 10 -3 cm 2 V -1 s -1 . However, the dark current reduction is mostly balanced by a loss of absorption. To overcome this limitation, we couple the FAPI/PbS hybrid to a guided mode resonator, that can enhance the infrared light absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.