In systems of interacting entities like social networks, interactions that occur regularly typically correspond to significant, yet often infrequent and hard to detect, interaction patterns. To identify such regular behavior in streams of dynamic interaction data, we propose a new mining problem of finding a minimal set of periodically recurring subgraphs to capture all periodic behavior in a dynamic network. We analyze the computational complexity of the problem and show that it is polynomial, unlike many related subgraph or itemset mining problems. We propose an efficient and scalable algorithm to mine all periodic subgraphs in a dynamic network. The algorithm makes a single pass over the data and is also capable of accommodating imperfect periodicity. We demonstrate the applicability of our approach on several real-world networks and extract interesting and insightful periodic interaction patterns. We also show that periodic subgraphs can be an effective way to uncover and characterize the natural periodicities in a system.
We describe an algorithmic and experimental approach to a fundamental problem in field ecology: computer-assisted individual animal identification. We use a database of noisy photographs taken in the wild to build a biometric database of individual animals differentiated by their coat markings. A new image of an unknown animal can then be queried by its coat markings against the database to determine if the animal has been observed and identified before. Our algorithm, called StripeCodes, efficiently extracts simple image features and uses a dynamic programming algorithm to compare images. We test its accuracy against two different classes of methods: Eigenface, which is based on algebraic techniques, and matching multi-scale histograms of differential image features, an approach from signal processing. StripeCodes performs better than all competing methods for our dataset, and scales well with database size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.