Additive Manufacturing (AM) has shown great potential for efficient realization of complicated microdevices fabricated with higher freedom of design and made from a wide variety of materials suiting to their specific target functionalities. Capability of generation of components with reduced weights, higher part consolidation, greater customization offered along with minimal waste generation are its advantages over conventional manufacturing processes. The AM built parts, however, need to undergo relevant post processing techniques to render them fit for their end product application. The paper attempts to classify the post processing techniques and emphasize their applicability to specific AM methods, generalized procedure as well as the recent improvements undergone. The post processing techniques have been categorised as methods for support material removal, surface texture improvements, thermal and non-thermal post processing and aesthetic improvements. The main challenges to the expansion of additive manufacturing have been discussed which highlight the future, scope of improvement and research required in the area of appropriate tool path development and product quality with regards to surface roughness, resolution and porosity levels in the built part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.