The malaria SYBR green assay, which is used to profile in vitro drug susceptibility of Plasmodium falciparum, is a reliable drug screening and surveillance tool. Malaria field surveillance efforts provide isolates with various low levels of parasitemia. To be advantageous, malaria drug sensitivity assays should perform reproducibly among various starting parasitemia levels rather than at one fixed initial value. We examined the SYBR green assay standardized procedure developed by the Worldwide Antimalarial Resistance Network (WWARN) for its sensitivity and ability to accurately determine the drug concentration that inhibits parasite growth by 50% (IC 50 ) in samples with a range of initial parasitemia levels. The initial sensitivity determination of the WWARN procedure yielded a detection limit of 0.019% parasitemia. P. falciparum laboratory strains and field isolates with various levels of initial parasitemia were then subjected to a range of doses of common antimalarials. The IC 50 s were comparable for laboratory strains with between 0.0375% and 0.6% parasitemia and for field isolates with between 0.075% and 0.6% parasitemia for all drugs tested. Furthermore, assay quality (Z=) analysis indicated that the WWARN procedure displays high robustness, allowing for drug testing of malaria field samples within the derived range of initial parasitemia. The use of the WWARN procedure should allow for the inclusion of more malaria field samples in malaria drug sensitivity screens that would have otherwise been excluded due to low initial parasitemia levels.
Epidemiological studies suggest that high nitrate levels in food and water may cause birth defects or spontaneous abortions in humans. Experimental mammalian studies show that high nitrite levels adversely affect reproductive outcomes, but have not shown congenital malformations. Consequently, the teratogenic potential of nitrite is unclear. In this study, the effects of nitrite on development of zebrafish embryos and early larval stages were investigated. Eggs were exposed to ethanol (a known teratogen), nitrite, or nitrate for 24 or 96 hours, and larvae examined at 120 hours. Sublethal exposure to 300 mM ethanol for 24 hours caused severe pericardial and yolk sac edema, craniofacial and axial malformations, and swim bladder noninflation. The 96 hour LC 50 for nitrite was 411 mg/L. Less severe edema, craniofacial (but not axial) malformations, swim bladder noninflation, and immobility were observed after sublethal exposure to nitrite between 10 and 300 mg/L for 96 hours. Exposure to nitrite for 24 hours at concentrations as high as 2000 mg/L was not lethal. Only axial malformations and swim bladder noninflation were observed at 1500 mg/L. The results demonstrate that sublethal nitrite concentrations cause developmental defects. The type and magnitude of these defects differed after 24 and 96 hours of exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.