Knowledge Graphs (KGs) are a type of knowledge representation that gained a lot of attention due to their ability to store information in a structured format. This structure representation makes KGs naturally suited for search engines and NLP tasks like question-answering (QA) and task-oriented systems; however, KGs are hard to construct. While QA datasets are more available and easier to construct, they lack structural representation. This availability of QA datasets made them a rich resource for machine learning models, but these models benefit from the implicit structure in such datasets. We propose a framework to make this structure more pronounced and extract KG from QA datasets in an end-to-end manner, allowing the system to learn new knowledge in incremental learning with a human-in-the-loop (HITL) when needed. We test our framework using the SQuAD dataset and our incremental learning approach with two datasets, YAGO3-10 and FB15K237, both of which show promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.