On 30 January 2020, the World Health Organization announced a new coronavirus, which later turned out to be very dangerous. Since that date, COVID-19 has spread to become a pandemic that has now affected practically all regions in the world. Since then, many researchers in medicine have contributed to fighting COVID-19. In this context and given the great growth of scientific publications related to this global pandemic, manual text and data retrieval has become a challenging task. To remedy this challenge, we are proposing CovBERT, a pre-trained language model based on the BERT model to automate the literature review process. CovBERT relies on prior training on a large corpus of scientific publications in the biomedical domain and related to COVID-19 to increase its performance on the literature review task. We evaluate CovBERT on the classification of short text based on our scientific dataset of biomedical articles on COVID-19 entitled COV-Dat-20. We demonstrate statistically significant improvements by using BERT.
In response to the researchers need in the bio-medical domain, we opted for automating the bibliographic research stage. In this context, several classification models of supervised machine learning are used. Namely the SVM, Random Forest, Decision Tree, KNN, and Gradient Boosting. In this paper, we conduct a comparative study between experimental results of full article classification and abstract classification approaches. Furthermore, we evaluate our results by using evaluation metrics such as accuracy, precision, recall and F1-score. We observe that the abstract approach outperforms the full article approach in terms of learning time and efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.