This paper presents a framework based on machine learning algorithms to predict nutrient content in leaf hyperspectral measurements. This is the first approach to evaluate macro- and micronutrient content with both machine learning and reflectance/first-derivative data. For this, citrus-leaves collected at a Valencia-orange orchard were used. Their spectral data was measured with a Fieldspec ASD FieldSpec® HandHeld 2 spectroradiometer and the surface reflectance and first-derivative spectra from the spectral range of 380 to 1020 nm (640 spectral bands) was evaluated. A total of 320 spectral signatures were collected, and the leaf-nutrient content (N, P, K, Mg, S, Cu, Fe, Mn, and Zn) was associated with them. For this, 204,800 (320 × 640) combinations were used. The following machine learning algorithms were used in this framework: k-Nearest Neighbor (kNN), Lasso Regression, Ridge Regression, Support Vector Machine (SVM), Artificial Neural Network (ANN), Decision Tree (DT), and Random Forest (RF). The training methods were assessed based on Cross-Validation and Leave-One-Out. The Relief-F metric of the algorithms’ prediction was used to determine the most contributive wavelength or spectral region associated with each nutrient. This approach was able to return, with high predictions (R2), nutrients like N (0.912), Mg (0.832), Cu (0.861), Mn (0.898), and Zn (0.855), and, to a lesser extent, P (0.771), K (0.763), and S (0.727). These accuracies were obtained with different algorithms, but RF was the most suitable to model most of them. The results indicate that, for the Valencia-orange leaves, surface reflectance data is more suitable to predict macronutrients, while first-derivative spectra is better linked to micronutrients. A final contribution of this study is the identification of the wavelengths responsible for contributing to these predictions.
Accurately mapping farmlands is important for precision agriculture practices. Unmanned Aerial Vehicles (UAV) embedded with multispectral cameras are commonly used to map vegetation in these areas. However, separating plantation fields from the remaining objects in a multispectral scene is a difficult task for most traditional algorithms. In this manner, deep learning methods that perform semantic segmentation could help improve the overall outcome. To the best of our knowledge, in the agricultural context, it is yet unknown the performance of deep networks to semantic segmentation in UAV-based multispectral imagery; especially in arboreous vegetation types like citrus-orchards. Here, we evaluate state-of-the-art deep learning methods to semantic segment citrus-trees in multispectral images. For this purpose, we used a multispectral camera that operates at the green (530-570 nm), red (640-680 nm), red-edge (730-740 nm), and also near-infrared (770-810 nm) spectral regions. We evaluated the performance of the five state-of-the-art pixelwise methods: FCN, U-Net, SegNet, DeepLabV3+, and DDCN. Our results indicate that the evaluated methods performed similarly in the proposed task, returning F1-Scores between 94.00% (FCN and U-Net) and 94.42% (DDCN). We also determined the inference time needed per area, and although the DDCN method was slower, based on a qualitative analysis, it performed better in highly shadow-affected areas. We conclude that the semantic segmentation of citrus orchards is highly achievable with deep neural networks. The state-of-the-art deep learning methods investigated here proved to be equally suitable to solve this task, providing fast solutions with inference time varying from 0.98 to 4.36 minutes per hectare. This approach could be incorporated into similar research, and contribute to decision-making and accurate mapping of the plantation fields.
In soybean, there is a lack of research aiming to compare the performance of machine learning (ML) and deep learning (DL) methods to predict more than one agronomic variable, such as days to maturity (DM), plant height (PH), and grain yield (GY). As these variables are important to developing an overall precision farming model, we propose a machine learning approach to predict DM, PH, and GY for soybean cultivars based on multispectral bands. The field experiment considered 524 genotypes of soybeans in the 2017/2018 and 2018/2019 growing seasons and a multitemporal–multispectral dataset collected by embedded sensor in an unmanned aerial vehicle (UAV). We proposed a multilayer deep learning regression network, trained during 2000 epochs using an adaptive subgradient method, a random Gaussian initialization, and a 50% dropout in the first hidden layer for regularization. Three different scenarios, including only spectral bands, only vegetation indices, and spectral bands plus vegetation indices, were adopted to infer each variable (PH, DM, and GY). The DL model performance was compared against shallow learning methods such as random forest (RF), support vector machine (SVM), and linear regression (LR). The results indicate that our approach has the potential to predict soybean-related variables using multispectral bands only. Both DL and RF models presented a strong (r surpassing 0.77) prediction capacity for the PH variable, regardless of the adopted input variables group. Our results demonstrated that the DL model (r = 0.66) was superior to predict DM when the input variable was the spectral bands. For GY, all machine learning models evaluated presented similar performance (r ranging from 0.42 to 0.44) for each tested scenario. In conclusion, this study demonstrated an efficient approach to a computational solution capable of predicting multiple important soybean crop variables based on remote sensing data. Future research could benefit from the information presented here and be implemented in subsequent processes related to soybean cultivars or other types of agronomic crops.
infer the insect-damaged on cotton plants based on multispectral bands from other sensors, being a useful tool for future research that intends to evaluate it in other areas and at different field scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.